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Phonons have the characteristic linear dispersion relation of massless relativistic particles. They
arise as low energy excitations of Bose-Einstein condensates and, in nonhomogeneous situations,
are governed by a space- and time-dependent acoustic metric. We discuss how this metric can be
experimentally designed to realize curved spacetime geometries, in particular, expanding Friedmann-
Lemaître-Robertson-Walker cosmologies, with negative, vanishing, or positive spatial curvature.
A nonvanishing Hubble rate can be obtained through a time-dependent scattering length of the
background condensate. For relativistic quantum fields this leads to the phenomenon of particle
production, which we describe in detail. We explain how particle production and other interesting
features of quantum field theory in curved spacetime can be tested in terms of experimentally
accessible correlation functions.

I. INTRODUCTION

When studying quantum field theory in curved space-
time, many interesting phenomena and peculiarities arise.
Most prominently, allowing for a time-dependence in the
metric, which is naturally the case in cosmology, leads to
the phenomenon of particle production [1–4]. Although
indirect signatures of this effect can be observed, for ex-
ample in the cosmic microwave background, any direct
detection is an open challenge.
In recent years, an analogy of this phenomenon has

been studied in the context of Bose-Einstein condensates
(BECs), as an integral part of the analog gravity program
(see [5–7] for introductions). More precisely, the linear
phononic excitations on top of the ground state of a BEC
obey a Klein-Gordon equation for a scalar quantum field
in curved spacetime in the acoustic approximation (that
is neglecting quantum pressure) [8]. The corresponding
metric is the so-called acoustic metric (see also [9, 10] for
early developments in the context of fluids) and is fully
determined by the background parameters of the BEC,
such as the background density or the speed of sound.
In this manner, the condensate shapes the spacetime
geometry experienced by the acoustic excitations.
It has been shown that introducing suitable time-

dependencies of either the scattering length or the external
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trapping potential allow for a one-to-one mapping of the
acoustic metric onto spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) metrics [11–21]. In this sense,
all phononic modes propagate in a spacetime geometry
set by the acoustic metric with the same speed of sound.
In this way, modern cold atoms experiments allow for
a direct analysis of quantum effects in the context of
cosmological models.
Further theoretical studies in this direction have in-

cluded quantum pressure leading to a quadratic dispersion
relation in the ultraviolet momentum regime and so-called
rainbow FLRW metrics [19, 22]. Two-component BECs
allowing for an additional massive phononic mode have
also been investigated [23, 24]. Recent experimental ef-
forts for simulating an expanding universe in d = 1 + 1
effective spacetime dimensions [25] in the laboratory can
be found in [26, 27].
Other interesting phenomena that have been studied

within the acoustic metric approach (also experimentally)
comprise sonic black holes [9, 10, 28–31], the Unruh ef-
fect [32–34], Hawking radiation [35–38] or the dynamic
Casimir effect [39]. For an overview over current experi-
mental approaches see Ref. [40].
In this work, we focus on the analogy between the

acoustic metric and the FLRW metric for an effectively
d = 2 + 1 dimensional isotropic trap, which is a com-
mon setup of modern BEC experiments. In contrast to
previous works, we derive the acoustic metric by parame-
terizing the quantum fluctuations on top of the ground
state in terms of the real and imaginary parts of the com-
plex nonrelativistic scalar field, instead of magnitude and
complex phase (see e.g. [41, 42] for a detailed discussion
regarding this parameterization).
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We generalize previous studies from spatially flat to
spatially curved spacetimes. To this end we explicitly
consider radial dependencies of the background density
profile. We find mappings between FLRW universes of
positive and negative spatial curvature and the acoustic
metric.
After allowing in addition also for a time-dependent

scattering length, we analyze particle production in dif-
ferent types of expanding cosmologies. In this sense, we
extend on earlier considerations by providing an exact
mapping to a more general class of cosmologies and by
showing how the effect of particle production is accessible
experimentally. Note that some technical details on the
cosmology side are provided in our companion paper [43].
The remainder of this paper is organized as follows.

In Sec. II we introduce isotropic traps in a quasi two-
dimensional geometry and make an ansatz for the quan-
tum effective action. We derive conditions on the back-
ground parameters such that the background density
remains static. We also compute the acoustic metric from
the effective action for the fluctuations and discuss the
external potentials required for a one-to-one mapping be-
tween the acoustic metric and FLRW metrics of positive
and negative curvature. Thereupon, we investigate the
properties of the arising FLRW universes by comparing
the dynamics of radially outmoving phonons. In Sec. III
we derive a formalism for the spectrum of fluctuations and
the two-point correlation function of a rescaled density
contrast for different types of (spatially curved) cosmolo-
gies. We study both quantities in Sec. IV for various
experimentally accessible scenarios and point out robust
features. Finally, we give a résumé and formulate an
outlook in Sec. V.
Notation. In this paper we work in SI units. For conve-

nience, we use operator hats for creation and annihilation
operators and drop them otherwise. Greek indices µ, ν
run from 0 to 2, while latin indices i, j only run from 1
to 2. Also, vectors are denoted by bold symbols.

II. ACOUSTIC METRIC IN 2D ISOTROPIC
TRAPS

In the first part of this work, we discuss the acoustic
metric and how it can be mapped to curved FLRWmetrics
for a quasi two-dimensional BEC that is confined in an
isotropic trap.

A. Quasi two-dimensional geometry and quantum
effective action

Let us begin our analysis with the quantum effective ac-
tion of a nonrelativistic complex scalar field equipped with
a quartic contact interaction term. This is an accurate
description for the dynamics of a Bose-Einstein conden-
sate, i.e. a weakly coupled Bose gas, where most atoms
occupy the ground state. We denote the bosonic field

expectation value (in general in the presence of sources)
in d = 3 + 1 spacetime dimensions by ψ(t, r). We con-
sider a pancake-type geometry in cylindrical coordinates
(r, ϕ, z) and a condensate that is tightly confined in the
z-direction. Then, the extension of the condensate in
z-direction lz is much smaller than in the longitudinal
direction lr, i.e. lz � lr, leading to a quasi d = 2 + 1
dimensional geometry. Due to the strong confinement
in z-direction, the motional degrees of freedom in this
direction are frozen in, such that the mean field ψ(t, r)
separates according to ψ(t, r) = Φ(t, r, ϕ)ζ(z), where ζ(z)
is typically of Gaussian form.

We study the dynamics of the field Φ(t, r) in effectively
d = 2 + 1 spacetime dimensions. Then, the ansatz for the
action reads [41]

Γ[Φ] =

∫
dt d2r

{
i~Φ∗(∂t + iA0)Φ

− ~2

2m
(∇− iA)Φ∗(∇ + iA)Φ− λ

2
(Φ∗Φ)2

}
.

(1)

Here, m denotes the mass of the atoms and λ = λ(t) is
a time-dependent coupling, which can be expressed in
terms of the s-wave scattering length as(t) within Born’s
approximation [44],

λ(t) =

√
8πωz~3
m

as(t), (2)

where ωz is the trapping frequency in z-direction.
Furthermore, we introduced an external U(1) gauge

field A = (A0,A) such that there is a symmetry of the
action Γ[Φ] under the local U(1) transformation

Φ(t, r)→ e−iα(t,r)Φ(t, r),

A0(t, r)→ A0(t, r) + ∂tα(t, r),

A(t, r)→ A(t, r) + ∇α(t, r).

(3)

An external trapping potential is then given by A0(t, r) =
V (t, r)/~. In our analysis, we restrict to isotropic trapping
potentials of the form

V (t, r) =
m

2
ω2(t)f(r), (4)

where ω(t) is a time-dependent parameter and f(r) is
typically a polynomial in r. Without loss of generality we
can assume f(0) = 0. For example, f(r) = r2 corresponds
to the commonly used harmonic trap, in which case ω(t)
plays the role of a trapping frequency. Moreover, in
chemical equilibrium the chemical potential would enter
A0 such that A0(t, r) = (V (t, r)− µ) /~.

In the following, we will work with a linear splitting of
the fundamental field Φ into a background part φ0 and a
fluctuating part parametrized by two real fields φ1 and
φ2, such that

Φ(t, r) = φ0(t, r) +
1√
2

[φ1(t, r) + iφ2(t, r)] . (5)
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Therein, we allowed for general space- and time-
dependencies for all fields. In the present work, we do not
consider any explicit backreaction of fluctuations to the
form of the action. The fluctuations are assumed to be
small enough and will be kept only to linear order in equa-
tions of motion corresponding to quadratic order in the
action. Conceptually this corresponds to a background
field which is well described by mean field equations. We
will also not consider any renormalization of the couplings
in the action. In this sense, the action (1) can actually
be identified with (an approximation of) the quantum
effective action, which is renormalized already.

We are particularly interested in evaluating the effective
action at the point where the field equation of motion is
satisfied,

δ

δΦ(t, r)
Γ[Φ] = 0. (6)

The background field φ0(t, r) corresponds then to an
expectation value of the microscopic field or quantum
operator in the absence of sources (up to a wave function
renormalization constant). The normalization implicit
in equation (1) is such that ns = |Φ|2 is the superfluid
density, which at vanishing temperature equals the full
density n = ns. For A0 = V/~ and A = 0, the classical
field φ0(t, r) is a solution of the Gross-Pitaevskii equation
[45, 46]

i~∂tφ0 =

(
− ~2

2m
∇2 + V + λ|φ0|2

)
φ0. (7)

The superfluid behavior of the condensate mean field
φ0(t, r) can be highlighted by introducing the Madelung
representation [47],

φ0(t, r) =
√
n0(t, r)eiS0(t,r), (8)

with n0(t, r) = |φ0(t, r)|2 denoting the background
particle number density and S0(t, r) being the back-
ground phase of the condensate’s mean field. Using the
parametrization (8) in Eq. (7) leads to a pair of hydrody-
namic equations. Namely, one obtains the local conserva-
tion law or continuity equation

0 = ∂tn0 + ∇(n0v), (9)

and the Euler equation [48]

0 = ~∂tS0 + V + λn0 +
~2

2m
(∇S0)2. (10)

We introduced the superfluid velocity via

v =
~
m
∇S0, (11)

and neglected the quantum pressure term,

q = − ~2

2m

∇2√n0√
n0

, (12)

in (10), which is the standard assumption leading to the
acoustic approximation [5, 8]. Note that q in Eq. (12)
is of second order in ~, as well as in spatial derivatives,
such that it is expected to be subleading for sufficiently
smooth density.

The dynamics of the background variables required to
mimic FLRW universes for the fluctuating variables will
be discussed in Sec. II B and Sec. II C, respectively.

B. Stationary background density profile

Although we have allowed for general time-dependencies
of the trapping potential V (t, r) and the coupling λ(t),
we are interested in describing situations where the back-
ground density n0 remains static. Therefore, we do not
follow the common scaling ansatz put forward in [49], but
instead require the background velocity to vanish v = 0.
As a consequence, we do not need to distinguish between
laboratory and comoving coordinates as they agree in
static situations. The condition v = 0 renders the conti-
nuity equation (9) trivial, while the Euler equation (10)
evaluates to

0 = −µ0(t) +
m

2
ω2(t)f(r) + λ(t)n0(r), (13)

where we have introduced the background chemical po-
tential

µ0(t) = −~∂tS0(t). (14)

Equation (13) yields the background density profile

n0(r) = n̄0

(
1− f(r)

R2

)
=
µ0(t)

λ(t)
− mω2(t)

2λ(t)
f(r).

(15)

Oftentimes f(r) is a monotonously increasing function of
radius r and the condensate extends up to a radius R such
that r ∈ [0, R], at which the density either drops to zero
or takes a constant value. Furthermore, we introduced
the constant background density at the center of the trap
n̄0 = n0(r = 0), which is also the proportionality constant
between the time-dependent chemical potential µ0(t) and
the coupling λ(t), in mean field approximation,

µ0(t) = n̄0 λ(t). (16)

The constant n̄0 is also related to the total particle number
N via

N = 2π n̄0

∫ R

0

dr r
(

1− f(r)

R2

)
. (17)

Moreover, the size parameter R appears in the propor-
tionality constant between the time-dependent parameter
ω(t) and the coupling λ(t)

ω2(t) =
2n̄0
mR2

λ(t). (18)
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FIG. 1. The density profile n0(r) = n̄0(1 − r2/R2)2 (blue
solid curve) is shown together with the corresponding time-
dependent trapping potential V (t, r) (red dashed curve) and
chemical potential µ0(t) (black dotted line). Note that we have
set n̄0 = 1. Decreasing the coupling λi = 1→ λf = λi/2 = 1/2
and changing the trapping potential V (t, r) accordingly leads
to a stationary background density profile n0(r). In order to
illustrate this we set all SI units to 1.

If the coupling λ(t) is changed over time, the latter condi-
tion has to be fulfilled in order to guarantee a stationary
density profile of the form (15).

Let us discuss a couple of choices for the radial depen-
dence of the trap encoded in f(r). For f(r) = r2, we
obtain the well-known Thomas-Fermi density profile in a
harmonic trap and R corresponds to the Thomas-Fermi
radius, while f(r) = Fθ(r − R) with F → ∞ leads to a
homogeneous density profile in the region r < R. The
latter allows for a mapping to a flat FLRW cosmology,
which is discussed in detail in [18].

As we will show later, spatially curved but homoge-
neous and isotropic FLRW universes follow from radial
dependencies of the trap and density profiles of the form

f(r) = ±2r2 − r4

R2
and n0(r) = n̄0

[
1∓ r2

R2

]2
. (19)

The time dependence of all involved quantities in the
density profile of Eq. (19) (with the upper sign) is sketched
in Fig. 1. When reducing the coupling λ(t) over time, for
example to half of its initial value, the parameter ω(t) has
to be adjusted according to (18) (the background chemical
potential µ0(t) follows (16)), such that the density profile
remains static. Note that decreasing the coupling λ(t) and
adjusting the parameter ω(t) accordingly over time never
breaks the confinement condition ω(t) � ωz, provided
that it is fulfilled initially.

C. Deriving the acoustic metric

As a next step, we consider the dynamics of the fluc-
tuations parametrized by the two real fields φ1 and φ2
introduced in Eq. (5). To that end, we expand the ef-
fective action (1) around the background solution φ0 to
quadratic order in the fluctuating fields φ1 and φ2, which
yields

Γ[Φ] = Γ[φ0] + terms linear in φ1, φ2 + Γ2[φ1, φ2], (20)
with

Γ2[φ1, φ2] =

∫
dt d2r

{
~φ2∂tφ1 −

~2

4m

[
(∇φ1)2 + (∇φ2)2

]
− 1

2

(
~A0 + ~2

A2

2m

)
(φ21 + φ22)

− ~2

2m
A(φ1∇φ2 − φ2∇φ1)− λ

2
(φ1, φ2)

(
n0 + 1

2 (φ∗0 + φ0)2 1
2 (φ∗0 + φ0)(iφ∗0 − iφ0)

1
2 (φ∗0 + φ0)(iφ∗0 − iφ0) n0 + 1

2 (iφ∗0 − iφ0)2

)(
φ1
φ2

)}
.

(21)

Terms linear in the fluctuating fields φ1 and φ2 cancel out
at the point where the effective action is stationary (cf.
Eq. (6)), therefore we only have to consider the quadratic
part Γ2[φ1, φ2].

To relate the linearization for the background field (5)
to its Madelung representation (8), we perform a local
U(1) gauge transformation of the form

φ0 +
1√
2

[φ1 + iφ2]→ e−iS0

(
φ0 +

1√
2

[φ1 + iφ2]

)
,

A0 → A0 + ∂tS0,

A→ A + ∇S0.

(22)

This transformation redefines the fluctuating fields and
rotates the – in general complex – background field φ0
such that it becomes real. If we again take the values
before the transformation to be A0 = V/~ and A = 0,

then we get afterwards

A0 =
V

~
+ ∂tS0, and A = ∇S0, (23)

so that the effective action for the fluctuations becomes

Γ2[φ1, φ2]

=

∫
dt d2r

{
~φ2∂tφ1 −

~2

4m

[
(∇φ1)2 + (∇φ2)2

]
− 1

2

(
V + ~∂tS0 + ~2

(∇S0)2

2m

)
(φ21 + φ22)

− ~2

2m
(∇S0)(φ1∇φ2 − φ2∇φ1)

−λn0
2

(3φ21 + φ22)

}
.

(24)

The latter can be simplified using the Euler equation (10),
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to wit

Γ2[φ1, φ2]

=

∫
dt d2r

{
− ~2

4m
(∇φ2)2 − 1

2
φ1

(
2λn0 − ~2

∇2

2m

)
φ1

+φ1

[
−~∂tφ2 −

~2

m
(∇S0)∇φ2 −

~2

2m
(∇2S0)φ2

]}
.

(25)

In the soft regime, i.e. for small momenta, one can replace
2λn0 − ~2∇2/2m → 2λn0, which realizes the acoustic
approximation for the fluctuation field. This allows one
to integrate out φ1 by evaluating it on its equation of
motion, leading to a quadratic effective action for φ2
only. Moreover, we also neglect the term ∇2S0, that
is, we assume that the background velocity is constant
v = const., which is indeed fulfilled for the scenarios
described in Sec. II B, and we rescale the fluctuating field
φ ≡ φ2/

√
2m, such that it has standard mass dimension

of a relativistic scalar field. Then we find

Γ2[φ] =
~2

2

∫
dt d2r

{
1

c2
(∂tφ)2 − (∇φ)2

+
2

c2
(∂tφ)v ·∇φ+

1

c2
(v ·∇φ)2

}
,

(26)

where we introduced the time- and space-dependent speed
of sound

c2(t, r) =
λ(t)n0(t, r)

m
. (27)

Finally, the latter effective action can be rewritten as an
effective action for a free massless scalar field in a curved
spacetime determined by the acoustic metric gµν(x),

Γ2[φ] = −~2

2

∫
dt d2r

√
g gµν∂µφ∂νφ, (28)

where √g ≡
√
−det(gµν). Comparing (26) and (28)

reveals that the covariant components of the acoustic
metric are given by

(gµν) =

(
−1 vj

vi c2δij − vivj
)
, (29)

while its contravariant components read

(gµν) =
1

c2

(
−(c2 − v2) −vj
−vi δij

)
. (30)

Furthermore, this yields √g = 1/c2.
Also, in the acoustic approximation and for a stationary

background (v = 0) we find a simple relation between the
fluctuating fields

φ1 = − ~
2λ(t)n0(r)

∂tφ2, (31)

showing that φ1 is proportional to the time derivative of
φ2.

D. From an acoustic metric to curved FLRW
universes

Restricting ourselves to the scenarios described in Sec.
II B, i.e. stationary density profiles for the background
density n0(r) corresponding to v = 0, leads to an acoustic
line element of the form

ds2 = gµνdxµdxν

= −dt2 + a2(t)

(
1− f(r)

R2

)−1
(dr2 + r2dϕ2),

(32)

where we defined a time-dependent scale factor

a2(t) ≡ m

n̄0

1

λ(t)
. (33)

In order to reshape the former into a curved FLRW line
element, we continue with the particular choice f(r) =
±2r2 − r4/R2 put forward in Eq. (19), which yields the
line element

ds2 = −dt2 + a2(t)

(
1∓ r2

R2

)−2
(dr2 + r2dϕ2). (34)

We then perform a coordinate transformation for the
radial coordinate

u(r) =
r

1∓ r2

R2

, (35)

with u ∈ [0,∞) if we choose the negative sign, while
u ∈ [0, R/2] for the positive sign. We find the relation

dr2(
1∓ r2

R2

)2 =
du2

1± 4 u
2

R2

, (36)

such that the line element becomes

ds2 = −dt2 + a2(t)

(
du2

1− κu2
+ u2dϕ2

)
, (37)

which corresponds to the line element of curved FLRW
universes with negative/positive spatial curvature κ =
∓4/R2. Therein, the size of the condensate R determines
the value of the scalar curvature κ, which allows the latter
to be engineered in practice. Moreover, as the scale factor
a2(t) is antiproportional to the coupling λ(t) (cf. Eq.
(33)), decreasing (increasing) the coupling corresponds to
an expanding (contracting) universe.
Interestingly, one can recover a flat FLRW universe

without any additional variable transformation when re-
alizing a homogeneous background density profile n0 =
const., such that the radial dependent prefactor in the
spatial line element (32) is absent. This is typically ful-
filled in a box trap or in a sufficiently small region around
the center of a (harmonic) trap.

Let us mention that for a (possibly inverted) harmonic
trap f(r) = ±r2, the acoustic metric becomes

ds2 = −dt2 + a2(t)

(
1∓ r2

R2

)−1
(dr2 + r2dϕ2), (38)
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FIG. 2. a) The one-to-one correspondence between particular
radially symmetric density profiles and geometries of FLRW
universes is shown, with lattices emphasizing spatial curvature.
b) The blue points on a positively curved universe represented
as a half-sphere embedded in three-dimensional Euclidean
space are projected onto a polar disk via the blue straight
lines. The two red points are connected by a geodesic (red
line). c) Similar setup for a negatively curved universe shown
as a hyperboloid embedded in three-dimensional Minkowski
space, which is projected onto the Poincaré disk.

requiring the coordinate transformation to be of the form

u(r) =
r(

1∓ r2

R2

)1/2 . (39)

Expanding the denominator of the radial differential up
to quadratic order in the new radial coordinate u yields

dr2

1∓ r2

R2

=
du2(

1± u2

R2

)2 ≈ du2

1± 2 u
2

R2

, (40)

which is a reasonable approximation in a large region
around the center of the trap. Then, one can also arrive at
(37) for κ = ∓2/R2, such that the harmonic trap produces
curved FLRW universes in a macroscopic region around
the center of the trap. Typically, the approximation works
well up to r ≈ 0.4R. However, in order for the mapping to
be exact within the acoustic approximation, the trapping
potential has to be of the form (19).

E. Models of spatially curved spacetimes

The relation between the density profiles (19) and the
spatially curved FLRW universes is illustrated in Fig. 2
a). Thereupon, let us further comment on the different
sets of spatial coordinates and their geometric meaning.

The spatial FLRW line element (37) is written in terms
of reduced-circumference polar coordinates in two spatial
dimensions (u, ϕ), which is a convenient choice also in
cosmology. The radial coordinate transformation in (35)
corresponds (up to a factor of 2) to the transformation be-
tween reduced-circumference polar coordinates and polar
coordinates in the polar plane (r ≤ R,ϕ) for κ > 0, or in
the Poincaré disk model (r ≤ R,ϕ) for κ < 0. Hence, the
laboratory line element (34) describes at every instance
of time t, depending on spatial curvature, a polar disk or
a Poincaré disk.
The arising spatially curved geometries in the labora-

tory coordinates (r, ϕ) may be understood from the more
intuitive spherical and hyperboloid models, for which we
make a distinction of cases. For the positively curved uni-
verse (κ > 0), we start from three-dimensional Euclidean
space R3 with cartesian coordinates (X,Y, Z) and line
element

ds2 = dX2 + dY 2 + dZ2. (41)

A two-sphere of radius R/2 is embedded in this space via
the equation

R2/4 = X2 + Y 2 + Z2. (42)

Points on the sphere can be represented by two angles
θ′ ∈ [0, π], ϕ′ ∈ [0, 2π), which can be mapped to the global
coordinates via

(X,Y, Z) = R/2 (sin θ′ cosϕ′, sin θ′ sinϕ′, cosϕ′) . (43)

The induced metric on the two-sphere reads

ds2 = R2/4
(
dθ′2 + sin2 θ′ dϕ′2

)
, (44)

which corresponds to an intuitive representation of a
positively curved space (cf. Fig. 2 b)). However, the two-
sphere can also be mapped to the laboratory picture, i.e.
the polar disk with coordinates (r, ϕ), via a stereographic
projection from the north pole (0, 0, R/2) onto the disk
located at the south pole (0, 0,−R/2) (illustrated with
blue lines connecting points on the sphere and in the
plane in Fig. 2 b)). Then, the laboratory coordinates are
related to the coordinates in S2 by

(r, ϕ) =

(
R cot

θ′

2
, ϕ′
)
, (45)

and we obtain the spatial part of the FLRW line element
in the laboratory (34), with positive sign.
In case of the negatively curved universe (κ < 0), we

have to start from three-dimensional Minkowski space M3

instead [50]. Adapting the cartesian coordinates (X,Y, Z)
from before leads to a line element of the form

ds2 = dX2 + dY 2 − dZ2, (46)

with an additional minus sign compared to (41). Then,
the upper hyperboloid can be embedded in this space
through (cf. Fig. 2 c))

−R2/4 = X2 + Y 2 − Z2 (47)



7

with Z > 0. On the hyperboloid, we choose a pseudoangle
σ′ ∈ [0,∞) instead of an angle θ′ ∈ [0, π], but keep the
azimuthal angle ϕ′ ∈ [0, 2π). We can express the global
coordinates in terms of the latter coordinates as

(X,Y, Z) = R/2 (sinhσ′ cosϕ′, sinhσ′ sinϕ′, coshσ′) ,
(48)

leading to an induced metric

ds2 = R2/4
(
dσ′2 + sinh2 σ′ dϕ′

)
, (49)

on the hyperboloid. Finally, we recover the laboratory
coordinates (r, ϕ) by a projection of the hyperboloid onto
the Poincaré disk located at the south pole of the hyber-
boloid, i.e. at (0, 0, R/2), using the apex (0, 0,−R/2) of
the lower hyperboloid (not shown in Fig. 2 c)) as the base
point. This projection is sketched with blue straight lines
in Fig. 2 c). We obtain the relation

(r, ϕ) =

(
R coth

σ′

2
, ϕ′
)
, (50)

and the spatial part of the FLRW line element (34) with
a minus sign for the metric in the Poincaré disk.

F. Phonon trajectories

To exemplify the influence of spatial curvature on the
dynamics of acoustic excitations in the Bose-Einstein con-
densate, we consider the motion of a radially outmoving
wave packet starting from the center of the trap. Phonons
follow null geodesics in an acoustic spacetime, so we look
for trajectories with ds2 = 0.

We proceed with the general line element (32), which is
expressed in terms of the radial coordinate in the labora-
tory r. For radial geodesics we have dϕ = 0; this, together
with ds2 = 0, leads to the simple differential equation

dt
a(t)

=
dr√

1− f(r)/R2
, (51)

with the initial condition r(t = 0) = 0. The three different
types of spatial curvature are generated by

f(r) =


−2r2 − r4/R2 for κ > 0,

0 for κ = 0,

+2r2 − r4/R2 for κ < 0,

(52)

so that to the equation of motion (51) has general solutions
of the form

r(t) = R


tan z(t) for κ > 0,

z(t) for κ = 0,

tanh z(t) for κ < 0,

(53)

where the argument z(t) can be obtained from the scale
factor a(t) via

z(t) =
1

R

∫ t

0

dt′

a(t′)
. (54)

For a quadratic trap profile, f(r) = ±r2, we would obtain
sin (sinh) instead of tanh (tan) in Eq. (53).

It is of particular interest to consider polynomial scale
factors. To explicitly allow for expanding as well as con-
tracting scenarios, we write

a(t) = Q |t− t0|γ , (55)

where Q = a(t = 0) |t0|−γ > 0 and t0 are free parameters
to be tuned in experiments. The latter family of scale
factors comprises the analogs of radiation dominated (γ =
2/3) and matter dominated (γ = 1) universes. Note that
the units of the parameter Q depend on the power γ.

For the polynomial scale factors with γ 6= 1 we find

z(t) =
1

QR

sgn(t− t0)|t− t0|1−γ + sgn(t0)|t0|1−γ

1− γ
, (56)

which is shown in the middle panel of Fig. 3 for γ = 1/2.
For the specific case γ = 0 corresponding to a static
situation (cf. left panel in Fig. 3), we get

z(t) =
t

QR
, (57)

while γ = 1 corresponds to

z(t) =
1

QR
ln
|t− t0|
|t0|

. (58)

Another interesting example is the de Sitter universe,
which is characterized by the scale factor

a(t) = a0 e
Ht, (59)

where H denotes the Hubble parameter and a0 = a(t = 0)
is now the initial scale factor. In this case we find

z(t) =
1

a0HR

(
1− e−Ht

)
. (60)

The resulting trajectories are depicted in the right panel of
Fig. 3. The quantitative influence of the spatial curvature
parameter κ is clearly visible.

III. PARTICLE PRODUCTION

We now turn to the phenomenon of particle production,
which arises when the spacetime geometry becomes time-
dependent. We develop a formalism to access particle
production experimentally within the FLRW cosmology
paradigm and consider all three types of spatial curvature
engineered via (52).

A. Klein-Gordon equation and mode functions

Let us start with the action (28) for the fluctuation
field φ. Varying the latter using Eq. (37) leads to a
Klein-Gordon equation

0 = ∂µ (
√
g gµν ∂νφ)

= 2a(t)ȧ(t)φ̇+ a2(t)φ̈−∆φ,
(61)
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FIG. 3. The trajectories of radially outmoving phonons for the trap profiles given in Eq. (52) are shown for a static situation
(left panel, with values Q = 2, t0 = −1, R = 1), a polynomial scale factor a(t) = Q(t − t0)1/2 (middle panel, with values
Q = 2, t0 = −1, R = 1) and a de Sitter type scale factor (right panel, with values a0 = 1, H = 1.5, R = 1). Clearly, the spatial
curvature influences the bending of the curves, with stronger / weaker bending for open (black dotted line) / closed (red dashed
line) universes compared to the flat one (blue solid line). Again, for convenience, we work with dimensionless parameters.

where ḟ ≡ ∂tf denotes the partial derivative with re-
spect to time t. The exact form of the Laplace-Beltrami
operator depends on the spatial curvature (see below).

For spatially curved universes with κ > 0, we transform
the radial coordinate u to an angle θ. It is convenient
to extend from the half sphere to the full sphere such
that θ ∈ [0, π). Similarly, for κ < 0 we can introduce the
pseudoangle σ ∈ [0,∞) and for κ = 0 we work with an
infinitely extended disk, u ∈ [0,∞). In summary we work
with a radial coordinate θ, u or σ defined by

u =


sin θ√
|κ|

for κ > 0,

u for κ = 0,
sinhσ√
|κ|

for κ < 0.

(62)

In these coordinates, one has

√
g = a2(t)×


sin θ
|κ| for κ > 0,

u for κ = 0,
sinhσ
|κ| for κ < 0,

(63)

and the isotropic Laplace-Beltrami operator in Eq. (61)
takes the simple form [51–53]

∆ =


|κ|
[

1
sin θ∂θ (sin θ ∂θ) + 1

sin2 θ
∂2ϕ

]
for κ > 0,

∂2u + 1
u∂u + 1

u2 ∂
2
ϕ for κ = 0,

|κ|
[

1
sinhσ∂σ (sinhσ ∂σ) + 1

sinh2 σ
∂2ϕ

]
for κ < 0.

(64)
The Laplace-Beltrami operator can be diagonalized
through an eigenvalue equation

∆Hkm(u, ϕ) = h(k)Hkm(u, ϕ), (65)

where we have introduced the radial wave numbers k and
l, which are related by k =

√
|κ|l, and the azimuthal wave

number m, with the ranges

l ∈ N0,m ∈ {−l, ..., l} for κ > 0,

k ∈ R+
0 ,m ∈ Z for κ = 0,

l ∈ R+
0 ,m ∈ Z for κ < 0,

(66)

along with sets of complete and orthonormal eigenfunc-
tions

Hkm(u, ϕ) =


Ylm(θ, ϕ) for κ > 0,

Xkm(u, ϕ) for κ = 0,

Wlm(σ, ϕ) for κ < 0.

(67)

Here, Ylm(θ, ϕ) are an adapted version of the spherical
harmonics,

Ylm(θ, ϕ) =

√
(l −m)!

(l +m)!
eimϕ Plm(cos θ), (68)

with Plm(cos θ) = (−1)mPml (cos θ) denoting the associ-
ated Legendre polynomials. Besides this sign, the choice
in (68) differs by a factor

√
4π/
√

2l + 1 from the stan-
dard definition of the spherical harmonics. For the flat
two-dimensional space one may use polar waves defined
in terms of Bessel functions of the first kind

Xkm(u, ϕ) = eimϕ Jm(ku). (69)

Finally, Wlm(σ, ϕ) are the eigenfunctions for κ < 0, which
are given by

Wlm(σ, ϕ) =(−i)m Γ(il + 1/2)

Γ(il +m+ 1/2)

× eimϕPmil−1/2 (coshσ) ,

(70)

wherein Pmil−1/2 (coshσ) are conical functions correspond-
ing to analytically continued Legendre functions. The
functions in equations (68), (69) and (70) are normalized
with respect to a scalar product as discussed in detail in
[43].
With these conventions, the eigenvalues h(k) of the

Laplace-Beltrami operator ∆ defined in Eq. (64) read

h(k) =


−k(k +

√
|κ|) for κ > 0,

−k2 for κ = 0,

−
(
k2 + 1

4 |κ|
)

for κ < 0,

(71)
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with the relation k =
√
|κ|l understood in the two spa-

tially curved cases. Note that h(k = 0) is only nonvanish-
ing for the open universe, κ < 0, and

√
|κ|/2 acts there

like an effective mass gap.
The fluctuation field φ is quantized as usual such that

it obeys the (equal time) bosonic commutation relations,

[φ(t, u, ϕ), π(t, u′, ϕ′)]

= i~δ(ϕ− ϕ′)×


δ(θ − θ′) for κ > 0,

δ(u− u′) for κ = 0,

δ(σ − σ′) for κ < 0,

(72)

where

π(t, u, ϕ) =
δΓ2[φ]

δφ̇
= ~2

√
gφ̇, (73)

denotes the conjugate momentum field.
To solve the linearized equation of motion (61) for the

different classes of universes, we expand the quantum
field φ in terms of the corresponding eigenfunctions of the
Laplace-Beltrami operator (67),

φ(t, u, ϕ)

=

∫
k,m

[
âkmHkm(u, ϕ)vk(t) + â†kmH

∗
km(u, ϕ)v∗k(t)

]
,

(74)

and similar for the conjugate momentum field π(t, u, ϕ).
Therein, we used the abbreviation

∫
k,m

=


∑∞
l=0|κ|

l+1/2
2π

∑l
m=−l for κ > 0,∫ dk

2π k
∑∞
m=−∞ for κ = 0,∫ dl

2π |κ|l tanh(πl)
∑∞
m=−∞ for κ < 0,

(75)

for the two-dimensional momentum integral. Also, we
have introduced creation and annihilation operators â†km
and âkm, respectively, which fulfill the bosonic commuta-
tion relations

[â†km, â
†
k′m′ ] = [âkm, âk′m′ ] = 0,

[âkm, â
†
k′m′ ] = 2πδmm′


δll′

|κ|(l+1/2) for κ > 0,
δ(k−k′)

k for κ = 0,
δ(l−l′)

|κ|l tanh(πl) for κ < 0,

(76)

together with the time-dependent mode functions vk(t)
and v∗k(t).
Combining the latter statements, we find from the

Klein-Gordon equation (61) the so-called mode equation

v̈k(t) + 2
ȧ(t)

a(t)
v̇k(t)− h(k)

a2(t)
vk(t) = 0. (77)

For given initial conditions at some point in time, one
can determine vk(t) by solving Eq. (77). Note that the
influence of the spatial curvature κ is fully encoded in h(k).
On the scales relevant for typical experiments, i.e. for

R ∼ 10−5 m, h(k) turns out to be practically independent
of the spatial curvature κ for k/

√
n̄0 & 0.1.

The mode functions are further constrained as a result
of the canonical commutation relation (72), the orthonor-
mality properties of the functions Hkm(u, ϕ) (see [43]),
and the bosonic commutation relations fulfilled by the
creation and annihilation operators (76), leading to a
normalization condition in terms of the Wronskian,

Wr[vk, v∗k] = a2(t)~ [vkv̇
∗
k − v̇kv∗k] = i. (78)

By using (77) one can show that (78) is fulfilled at all
times when it is fulfilled at one point in time.

Let us note here that (77) is a second order differential
equation, and (78) is just a single constraint, so that the
mode functions vk(t) are not fixed completely. In fact,
different choices of mode functions correspond to different
choices of creation and annihilation operators, and they
are related by Bogoliubov transformations. Note that
the quantum field φ in (74) is independent of this choice.
This is important to understand particle production, and
will be discussed next.

B. Bogoliubov transformations

Let us start by considering a situation (in the following
called region I) where the scale factor is constant, a(t) = ai.
In that case one has a preferred choice of mode functions
vk(t) given by oscillatory modes,

vI
k(t) =

exp(−iωI
kt)

ai

√
2~ωI

k

, (79)

with positive frequency ωI
k =

√
−h(k)/ai. Associated

with this choice of mode functions are operators âkm and
â†km that annihilate and create the corresponding phonons,
and a “vacuum” state |Ω〉 that has no such excitations,

âkm |Ω〉 = 0. (80)

The state |Ω〉 describes the ground state of a (weakly
interacting) Bose-Einstein condensate with no excitations.
More generally, one may also take some other state as a
starting point, for example with fixed temperature T .

Let us now assume that at some time ti the scale factor
a(t) becomes time dependent, until it becomes constant
again at time tf. For the intermediate times ti < t < tf
(called region II in the following), the mode functions
are determined as solutions of equation (77), with initial
conditions at t = ti set by continuity to the solution (79).
We stress that for a time-dependent scale factor (in region
II), the solution vk(t) obtained in this way will not be of
the oscillatory form (79). As a consequence, the notions of
vacuum states and (quasi)particles become more involved.
Mathematically, this is related to the absence of a global
timelike Killing vector field in that region, which would
allow to define positive frequency waves.
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FIG. 4. The time dependence of the scale factor a(t) (blue
solid line) and the coupling λ(t) (red dashed line) are shown
for the three regions I, II and III. Up to ti, both are held
constant, while they become time dependent in region II
(the plot above correspond to a polynomial expansion with
γ = 1/2, Q = m/n̄0 = 1 and t0 = 0, setting all units to 1) this
time dependence leads to particle production, observed in the
stationary region III for t > tf.

We concentrate on an experimental procedure sketched
in Fig. 4. Keeping in mind that the scale factor a(t) is
controlled by the inverse coupling λ(t) according to (33),
one may first engineer certain initial values ai and λi in a
time interval I up to ti. Then, the coupling λ(t) is varied
over time in time interval II, which simulates a FLRW
universe with time-dependent scale factor a(t). Finally,
the variation is stopped at tf = ti + ∆t, corresponding to
a stationary FLRW universe with scale factor af in time
interval III.

Let us then consider times t > tf where we assume that
the scale factor is again constant, a(t) = af (region III).
Here one can again find solutions of Eq. (77) in terms of
modes with positive frequencies,

uIII
k (t) =

exp(−iωIII
k t)

af

√
2~ωIII

k

, (81)

where now ωIII
k =

√
−h(k)/af. Associated to these modes

are operators b̂km and b̂†km and a corresponding “vacuum”
state |Ψ〉, such that

b̂km |Ψ〉 = 0. (82)

It is now important to note that the mode functions
vk(t) obtained from extending the solution in region I to
region II and then into region III will actually be a linear
superposition of positive and negative frequency solutions,
so that one can write

uk = αkvk + βkv
∗
k, vk = α∗kuk − βku∗k, (83)

with the complex-valued and time-independent Bogoli-
ubov coefficients αk and βk. From the normalization
condition (78) applied to uk(t) follows that the coeffi-
cients need to satisfy |αk|2 − |βk|2 = 1. In terms of the
Wronskian defined in (78) one has

αk = Wr[uk, v∗k]/i, βk = −Wr[uk, vk]/i. (84)

For completeness, we also mention the relation between
the two sets of creation and annihilation operators,

b̂km = α∗kâkm − β∗k(−1)mâ†k,−m. (85)

In particular it follows that the state |Ω〉, which is initially
a vacuum state in the sense of Eq. (80), is not an empty
state with respect to the excitations annihilated by the
operators b̂km. This is the essence of particle production
due to a time dependent scale factor a(t).

The task is then to solve the mode equation (77) in all
three regions I, II and III and to identify the Bogoliubov
coefficients αk and βk through Eq. (84), from which all
following quantities can be derived.

C. Rescaled density contrast: correlation function
and spectrum

To access the phenomenon of particle production ex-
perimentally, we introduce a rescaled density contrast

δc(t, u, ϕ) =

√
n0(u)

n̄30
[n(t, u, ϕ)− n0(u)] , (86)

where n(t, u, ϕ) = |Φ(t, u, ϕ)|2 denotes the full condensate
density, and n̄0 is the density in the center of the trap. In
this way, the rescaled density contrast is dimensionless,
and using Eqs. (5) as well as (31) one has to leading order
δc ∼ ∂tφ. Note here that for a box potential the given
prefactor is constant, while for other trapping potentials,
such as those put forward in Eq. (19), it has a substantial
dependence on u in the outer regions of the trap.

In the following, we consider the equal time two-point
correlation function of the rescaled density contrast after
the expansion has ceased, t ≥ tf, i.e.

Gnn(t;u, u′, ϕ, ϕ′) = 〈δc(t, u, ϕ)δc(t, u
′, ϕ′)〉 , (87)

which is a typical observable in modern ultracold atom
experiments. One can show that in leading order in
fluctuating fields, where we can assume 〈n(t, u, ϕ)〉 =
n0(u), the latter is proportional to the connected two-
point correlation function of time derivatives of fields

Gnn(t;u, u′, ϕ, ϕ′) =
~2m
λ2f n̄

3
0

Gφ̇φ̇(t, L), (88)

where

Gφ̇φ̇(t, L) =
1

2
〈{φ̇(t, u, ϕ), φ̇(t, u′, ϕ′)}〉c . (89)

The relation given in (88) is a result of the normalization
chosen in (86).

Moreover, as a consequence of the spatial homogeneity
of FLRW universes, two-point correlation functions do
not depend separately on the two spatial positions (u, ϕ)
and (u′, ϕ′), but only on the comoving distance L between
them,
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L =


1√
|κ|

cos−1 (cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′)) for κ > 0,[
u2 + u′2 − 2uu′ cos(ϕ− ϕ′)

]1/2 for κ = 0,
1√
|κ|

cosh−1 (coshσ coshσ′ − sinhσ sinhσ′ cos(ϕ− ϕ′)) for κ < 0,

(90)

and through (88) the observable defined in (86) acquires
the symmetries of the FLRW universe,

Gnn(t;u, ϕ, u′, ϕ′) ≡ Gnn(t, L). (91)

We proceed with the evaluation of this correlation function
through (89) within the FLRW universe paradigm using
the Bogoliubov transformations introduced in Sec. III B.
This leads to

Gnn(t, L) =
~af

n̄0m

∫
k

F(k, L)
√
−h(k)Sk(t), (92)

where we introduced the spectrum of fluctuations

Sk(t) =
1

2
+Nk + ∆Nk(t), (93)

as the momentum space representation of the rescaled
density contrast two-point correlation function.
Therein, we have the expected occupation number of

phonon excitations per mode

Nk = 〈Ω| b̂†km b̂km |Ω〉 = |βk|2, (94)

and the time-dependent contribution

∆Nk(t) = Re
[
cke

2iωkt
]
, (95)

wherein

ck = −(−1)m 〈Ω| b̂†km b̂
†
k,−m |Ω〉 = αkβk. (96)

Furthermore, we used the abbreviation

∫
k

=


∑∞
l=0|κ|

l+1/2
2π for κ > 0,∫ dk

2π k for κ = 0,∫ dl
2π |κ|l tanh(πl) for κ < 0,

(97)

and the integration kernels

F(k, L) =


Pl

(
cos
(
L
√
|κ|
))

for κ > 0,

J0 (kL) for κ = 0,

Pil−1/2

(
cosh

(
L
√
|κ|
))

for κ < 0,

(98)

for the different spatial curvatures specified by κ.
We can rewrite the spectrum of fluctuations (93) using

(95) and Euler’s formula

Sk(t) =
1

2
+Nk + |ck| cos (2ωkt+ θk) , (99)

where

θk = Arg(ck) (100)

denotes the phase corresponding to the momentum mode
k.
It is useful to note at this point that Nk and ∆Nk

defined in (94) and (95) with the relations (84) are invari-
ant under phase transformations on the mode functions
vk(t)→ eiλkvk(t), uk(t)→ eiµkuk(t), if one also takes into
account e2iωt → e−2iµke2iωt in Eq. (95). These phases
should not be observable.
Also, following [54, 55] one can show that entangle-

ment between modes with opposite wave numbers can
be witnessed in the two-mode squeezed state of rele-
vance whenever ∆Nk > Nk. The latter was recently
observed experimentally in [56] within a homogeneous
two-dimensional Bose-Einstein condensate after quench-
ing the time-dependent coupling λ(t) to negative values
and back. We leave a similar analysis within the FLRW
universe paradigm for future work.

Moreover, it is important to note that a two-point corre-
lation function of fields as defined in (89) shows an ultra-
violet divergence [3]. Consequently, the rescaled density
contrast correlation function (92) has to be regularized.
In the context of a Bose-Einstein condensate, a regulariza-
tion arises naturally as the readout of the density contrast
is limited by the precision of the measurement apparatus.
Moreover, the acoustic approximation that we use here is
a low momentum effective description that looses validity
in the ultraviolet regime.

To solve this problem, which is well known in cosmology,
one may work with smeared-out fields [57]

Φ(t, r) =

∫
d2r′W (r − r′)φ(t, r′), (101)

with a window function W (r − r′). The latter can be
normalized according to∫

d2r′W (r′) = 1. (102)

In momentum space, this window function plays the role
of an ultraviolet regulator. We end up with a regularized
expression for the rescaled density contrast correlation
function

Gnn(t, L) =
~af

n̄0m

∫
k

F(k, L)
√
−h(k)Sk(t)f̃G(k), (103)

where f̃G(k) = W̃ ∗(k)W̃ (k) corresponds to the absolute
square of the Fourier transformed window function.
In the following we work with a window function of

Gaussian form in position space (as a function of the
comoving distance), such that in the absence of spatial
curvature

f̃G(k) = W̃ ∗(k)W̃ (k) = e−w
2k2 . (104)
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D. Stimulated particle production

An initial state at time ti with nonvanishing occupation
number, such as a thermal state, would lead to stimulated
particle production [58]. This leads to a generalization of
the expressions derived above.
Assuming that the expected occupation number of

quasiparticles originally present in the mode k is given by

N in
k = 〈â†kmâkm〉 , (105)

the total expected number of quasiparticles after expan-
sion would be given by

Nk = N in
k + |βk|2

(
1 + 2N in

k

)
, (106)

where the last term corresponds to the stimulated pro-
duction. Similarly, ∆Nk(t) is generalized to

ck = αkβk
(
1 + 2N in

k

)
. (107)

As an example we will consider a thermal state, charac-
terized by an initial occupation number of the form

N in
k (T ) =

1

e~ω
I
k/(kBT ) − 1

, (108)

where T denotes the temperature.
In the following, to set a temperature scale, we use the

critical temperature Tc of an ideal gas in an anisotropic
trap. In particular, we consider a ratio between longi-
tudinal and radial trapping frequencies that elicit the
emergence of a 2D condensate [59]. This critical tempera-
ture is given by

Tc =
~ω
kB

(
N

ζ(2)

)1/2

, (109)

where N is the total number of atoms.

IV. EFFECTS OF EXPANSION

Let us now focus on particle production as the main
trait of an expanding spacetime, we do this within the
developed formalism for a set of cosmological situations.
In particular, we consider the spectrum of fluctuations
together with the rescaled density contrast correlation
function and discuss the outcome of various experimental
scenarios. If not stated differently, the experimental values
are taken from Appendix B.

A. Polynomial scale factors with various expansion
rates and holding times

We base our analysis on polynomial scale factors of
powers γ according to eq. (55) which comprise accelerating
(γ = 3/2), uniform (γ = 1), and decelerating (γ = 1/2)

expansions, and look into different expansion rates ∆t
and hold times after the expansion has ceased.

We study in Fig. 5 the effect of increasing the expansion
duration (at fixed ratio af/ai =

√
6), and obtain an anal-

ogous prediction to a cosmological situation: for slower
expansion the characteristic features of the power spec-
trum appear at smaller wave numbers. This can be read
out from the change in the shape of the spectrum in the
first row of Fig. 5. It can also be seen that a decelerating
expansion leads to slightly higher contrast in the spectrum
compared to accelerating or uniform expansion. Further-
more, at large momenta, the spectrum converges to the
ground state or “vacuum” expression. In the second row
of Fig. 5 we show the manifestation of these features in
position space, through the correlation function Gnn(t, L)
given in (103). On top of a strong (diverging at L = 0)
anticorrelation coming from features of the ground state
or “vacuum”, we see an anticorrelation-correlation pair at
finite distances. The magnitude of this pair of correlations
decreases with slower expansion rates, and is highest for
a decelerating scenario.

The evolution after expansion is given in the two lower
rows of Fig. 5. After a simulated expansion, done by
a 2 ms ramp, has ceased, the spectrum shifts to lower
momenta, and oscillates in time for each k mode around
Nk, with a period corresponding to the frequency of each
mode. A node in the spectrum appears for a particular
value of k which is not excited in the process of particle
production (βk = 0). This precise feature is present only
for the case of uniform expansion, and will be discussed
further in Sec. IVD.
Complementary, the position space evolution exhibits

a decreasing magnitude of correlation-anticorrelation pair
through time, along with a propagation to larger distances.
In the short range we also see a correlation build up as
a reaction to the expansion dynamics. The group of
correlations propagates at twice the speed of sound (Eq.
(27) at the center of the trap), as phonons travel away
from each other. The chosen width for convolution (here
w = 0.5µm) influences the shape of Gnn(t, L), but not
the position of the peaks, with the only exception being
the vacuum anticorrelation, which goes to L = 0 in the
limit of vanishing width. Robust features with respect to
changes of the width are discussed in Sec. IVE.

B. Initial thermal state

Together with an initial thermal state comes about the
phenomenon of stimulated particle production described
in Sec. III D. Given the divergence of the statistical distri-
bution (108) at low momenta, there is a large occupation
of soft modes also after the expansion, in contrast with the
outcome for vanishing initial temperature. Since stimu-
lated particle production is present for any state above the
ground state with T = 0, the study of this phenomenon
is crucial when comparing to realistic experimental situa-
tions. On the other hand, the question arises whether the
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FIG. 5. Spectrum of fluctuations Sk as a function of the radial wave number k together with its corresponding rescaled density
contrast correlation function Gnn(L) (cf. Eq. (103)) as a function of the comoving distance L measured in units of the parameter
R. Both are shown for various types of polynomial expansions (decelerating γ = 1/2, uniform γ = 1, and accelerating γ = 3/2).
Left column: Spectrum and correlation function right at the end of expansion. The dependence on different expansion rates ∆t
is depicted above, and evolution after expansion is shown below. At the level of the spectra, one can appreciate that a slower
expansion moves power to smaller wave numbers, whereas for faster expansions, more modes with higher momenta get excited.
The hold time dependence shows how this power is evolving with time, in favor of the lower momentum modes. At the level of
the correlation functions one can see that both, faster expansion rates ∆t and decelerated expansions (γ < 1) lead to stronger
short-range anticorrelations. The propagation of the spatial correlations in time after the expansion has ceased is governed by
the speed of sound in the condensate. In the lower row we show this: the correlation first builds up to a maximum, in this
case reached at 3 ms holding time, and then it travels through the condensate at twice the speed of sound. In the lower right
panel we highlight through dotted lines the distance traversed after 5ms by moving at twice the speed of sound. In all the
momentum space plots, a gray vertical dashed line indicates the low k limit at inverse condensate size. The position space
results are obtained after regularization with a Gaussian window function of width w = 0.5µm.

initial state in a concrete experiment is actually thermal.
In any case, the phenomenon of particle production can

help to investigate the properties of the initial state in an
experimental setting.
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Figure 1. Color. Effect of initial temperature, leading to stimulated particle production: it can be seen that in this case the
number of excited soft momenta is large, in contrast to particle production from the vacuum; note also that the spectrum Sk

diverges for k ! 0 as a consequence of the bosonic nature of gapless phonons at vanishing spatial curvature. After the expansion
has ceased, the power apparently moves towards lower momentum modes, and the spectrum distribution oscillates around
Sk = (1/2 + |�k|2)(1 + 2N in

k ). Regarding position space, a finite initial occupation enhances anticorrelations and suppresses
correlations. The short range correlation that builds up after the expansion has ceased is also enhanced, and the correlations
propagate again at twice the speed of sound, indicated through dotted lines in the bottom right panel. The two point rescaled
density contrast converges at long times to a thermal state, plus a finite contribution from the exited modes, determined by
|�k|2. In all the momentum space plots, a gray vertical dashed line indicates the low k limit at inverse condensate size. The
position space results given here correspond to a Gaussian convolution of w = 0.5 µm standard deviation.

FIG. 6. Effect of initial temperature, leading to stimulated particle production: it can be seen that in this case the number of
excited soft momenta is large, in contrast to particle production from the vacuum; note also that the spectrum Sk diverges
for k → 0 as a consequence of the bosonic nature of gapless phonons at vanishing spatial curvature. After the expansion
has ceased, the power apparently moves towards lower momentum modes, and the spectrum distribution oscillates around
Sk = (1/2 + |βk|2)(1 + 2N in

k ). Regarding position space, a finite initial occupation enhances anticorrelations and suppresses
correlations. The short range correlation that builds up after the expansion has ceased is also enhanced, and the correlations
propagate again at twice the speed of sound, indicated through dotted lines in the bottom right panel. The two point rescaled
density contrast converges at long times to a thermal state, plus a finite contribution from the exited modes, determined by
|βk|2. In all the momentum space plots, a gray vertical dashed line indicates the low k limit at inverse condensate size. The
position space results given here correspond to a Gaussian convolution of w = 0.5µm standard deviation.

In Fig. 6 we investigate stimulated particle production,
for three different initial temperatures in fractions of Tc,
at the level of both, the spectrum and the rescaled density
contrast correlation function as a function of hold time.

C. Spatial curvature

We showed in Sec. II D that different types of trapping
potentials induce acoustic spacetimes with different emer-
gent spatial curvatures. In the formalism employed in
Sec. III A, the effects of spatial curvature are carried into
the shape of Laplace-Beltrami’s operator, its eigenfunc-
tions, and its eigenvalues. Regarding time evolution in
momentum space (cf. Eq. (77)), spatial curvature enters
in fact only through the eigenvalue spectrum. Here, the
features of spatial curvature are equivalent to posing dif-
ferent boundary conditions on the eigenvalue equation,
and do not go further than that. A further dependence
on spatial curvature arises in the integral transform from
momentum to position space (cf. Eq. (98)).
As expected, the effect of curvature on the spectrum

of fluctuations is often negligible, but can be tuned to
a higher impact when decreasing the condensate radius.

Something similar happens to the rescaled density con-
trast, where differences are unimportant, even at small
radii; this is shown in Fig. 7. In the presence of an initial
thermal state this situation could change, given that the
Bose-Einstein distribution (108) differs for different dis-
persion relations. In particular for negative curvature N in

k
is bounded at k = 0, as a consequence of an acquired gap
in the dispersion relation. This was investigated and no
particular differences were found at different curvatures.

D. Time evolution of momentum modes and robust
features in momentum space

As we see overall in Fig. 5, the qualitative differences
related to different exponents γ in the scale factor could
be difficult to appreciate experimentally, when looking
into the complete spectrum and rescaled density contrast.
Nevertheless, one can look into details of the spectrum,
and through them, validate the particle production nature
of the experimental outcomes, and its dependence on
different expansion histories.
We consider first the time evolution of the spectra for

certain modes in regions II and III (cf. Fig. 9) that is,
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FIG. 7. Effect of different trapping potentials (inverted har-
monic, box, harmonic), which convey different spatial curva-
tures (positive, flat, negative; respectively). On the upper row
we show the outcome for a fixed atom number, so that the
density at the center of the trap depends on the shape of the
trap (c.f. (17) and (52)); this renders visible differences for
both the spectrum Sk and the rescaled density contrast Gnn

(obtained with a Gaussian convolution of width w = 4µm).
However, if the density at the center is taken to be the same for
all trap shapes, the spatial curvature κ influences the shape of
the spectrum Sk only at low momentum modes and provided
that R is sufficiently small, as depicted in the lower row. The
differences between rescaled density contrast correlations for
the closed, flat, and open universe are barely visible even when
R = 3µm. Additionally, for the chosen convolution width
(w = 0.4µm) the vacuum sector dominates in position space.
An inset into the correlation function shows that the results
for each curvature fall one above the other: this is a width
independent feature.

during and after the dynamic change of the scale factor;
there we observe that, independently of the polynomial
power of the scale factor, the phononic modes correspond-
ing to small wave numbers are suppressed by the expan-
sion, which is consistent with Fig. 5. Moreover, the time
evolution of the each momentum mode shows a slight de-
pendence on the expansion history, which is most evident
for a particular mode, at k = 1.51µm−1, that remains in
its vacuum value after uniform expansion (γ = 1), given
that this characteristic is not present for any mode in
nonuniform expansions.
This precise feature is also explicit in the phase θk

that each mode acquires after expansion, defined in (100),
which we consider next in Fig. 8. There, we see that
the phases of each wave number k strongly depend on
whether there is a decelerated, uniform, or accelerated
expansion. In the case of uniform expansion there are
phase jumps appearing at each mode where βk turns out
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Figure 1. Color. Phases ✓k (cf. (??)) of each k-mode after
expansion for three different scale factors. We see an important
qualitative difference in behavior depending on the choice of
�: for � = 1 and � = 3/2 the phase remains in a range of
(0,⇡), in particular, in the � = 1 case the phase is a linear
function of k. Also for this case there is a ⇡ jump which
appears if and only if Nk = 0, that is when a particular mode
is not excited as a result of expansion. The other two scale
factors don’t exhibit this feature. In contrast, for � = 1/2 the
phase increases continuously in the complete range (0, 2⇡). In
all cases, a slower expansion rate allows for a greater phase
growth.

FIG. 8. Phases θk (cf. (100)) of each k-mode after expansion
for three different scale factors. We see an important qualita-
tive difference in behavior depending on the choice of γ: for
γ = 1 and γ = 3/2 the phase remains in a range of (0, π), in
particular, in the γ = 1 case the phase is a linear function of k.
Also for this case there is a π jump which appears if and only
if Nk = 0, that is when a particular mode is not excited as a
result of expansion. The other two scale factors don’t exhibit
this feature. In contrast, for γ = 1/2 the phase increases
continuously in the complete range (0, 2π). In all cases, a
slower expansion rate allows for a greater phase growth.

to be zero. To emphasize, due to the shape of expansion,
βk is never zero for γ 6= 1. It is worthwhile to note that
phases as a function of k also give an insight into the
expansion duration ∆t.

E. Window function dependence and robust
features in position space

Given that any computation of the rescaled density con-
trast correlation function requires an ultraviolet regulator
in the form of a window or test function, we wish to find
features of the latter which are robust against variations
in the standard deviation w of the Gaussian family of
window functions we have chosen in Eq. (104). This is
not only an interesting task by itself, but also paves the
ground for a quantitative comparison to experiments.

To that end, we study the positions of the second mini-
mum –the first minimum is just the vacuum contribution–
and the first maximum of the correlation function. More
precisely, we investigate the aforementioned positions as a
function of expansion duration ∆t for different widths w,
for the particular case of γ = 1/2. The results are shown
in Fig. 10: we find that the influence of the width w is
negligible with regards to the slope of the curves, render-
ing position vs. expansion duration a robust observable.
Also in Fig. 10, the rescaled density contrast correlation
function Gnn(t, L) is shown for different widths w. The
resolution w determines the short-length L < 0.1R be-
havior of the two-point correlator indicating the need for
robust features.
Moreover, let us report that we have also investigated

the amplitudes of the maximum and the minimum and
their ratio, but did not find a similar form of robustness.
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Figure 1. Color. Upper row: positions of the second mini-
mum Lmin/R (left) and first maximum Lmax/R (right) of the
rescaled density contrast correlation function Gnn(t, L) as a
function of the expansion duration �t for various widths w.
The linear fits exhibit slopes robust against w and almost fall
on top of each other in the former case. Lower row: Gnn(t, L)
for various widths w at the time the expansion has ceased
(left panel), and two milliseconds after (right panel). Most
sensible to choice of w are the position and magnitude of the
vacuum anticorrelation. The position of the group of corre-
lations coming from particle production is relatively robust
against w, but the peaks tend to disappear as the width grows
closer to the healing length ⇠ ⇡ 1.6 µm. However, the group of
correlations moves with twice the speed of sound, independent
of the width w (indicated by a gray dotted line).

FIG. 10. Upper row: positions of the second minimum Lmin/R
(left) and first maximum Lmax/R (right) of the rescaled density
contrast correlation function Gnn(t, L) as a function of the
expansion duration ∆t for various widths w. The linear fits
exhibit slopes robust against w and almost fall on top of each
other in the former case. Lower row: Gnn(t, L) for various
widths w at the time the expansion has ceased (left panel),
and two milliseconds after (right panel). Most sensible to
choice of w are the position and magnitude of the vacuum
anticorrelation. The position of the group of correlations
coming from particle production is relatively robust against
w, but the peaks tend to disappear as the width grows closer
to the healing length ξ ≈ 1.6µm. However, the group of
correlations moves with twice the speed of sound, independent
of the width w (indicated by a gray dotted line).

V. CONCLUSION AND OUTLOOK

In summary, we have derived a correspondence between
phonons in a 2+1 dimensional Bose-Einstein condensate in

various radially symmetric trapping potentials and mass-
less scalar particles in spatially curved FLRW universes.
As opposed to common literature, this correspondence
was established starting from a nonrelativistic action and
describing phononic excitations in terms of the real and
imaginary parts of the fluctuations on top of the mean
field.
Furthermore, we investigated the phenomenon of par-

ticle production in momentum and in position space for
various experimentally accessible scenarios. We showed
that a suitably rescaled density contrast correlation func-
tion is to leading order proportional to a correlator within
the FLRW universe paradigm. As a consequence of rescal-
ing, spatial homogeneity and isotropy carried over to the
density contrast correlation function. Looking into ex-
perimental feasibility, we have shown that the phases of
momentum modes and the positions of maxima and min-
ima in the correlation function serve as robust observables
and are distinguishable for different dynamics in the scale
factor.
In future theoretical work it would be interesting to

extend our approach from d = 2+1 to d = 3+1 dimensions,
which should be straightforward. Also, one may want to
study more general excitation fields, involving spin degrees
of freedom, or modes with gaped excitation spectrum.
Also a generalization to the full Bogoliubov spectrum
beyond the acoustic approximation can be of interest for
some questions.
Another interesting direction could be to investigate

other expansions specified by the scale parameter, allow-
ing for a simulation of various epochs of expanding or
contracting universes. In particular, one may study the
de Sitter universe in the context of inflation or even a
cyclic universe, probably exhibiting additional features
such as parametric resonance.

Moreover, one may investigate particle production from
a quantum information theoretic perspective. More pre-
cisely, entanglement between modes of opposite momenta
may be analyzed for spatially curved universes, extending
the work of [54, 55].
Most importantly, it is of great interest to apply our

methods to concrete ultra cold atoms experiments. In
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particular, as the rescaled density contrast correlation
function serves as a typical observable, our work paves
the ground to an extensive experimental investigation of
particle production. We report on experimental confirma-
tion of our proposal in [60].
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Appendix A: Full Bogoliubov dispersion relation

In order to asses the validity of the acoustic approxima-
tion, it is also interesting to perform calculations in full
Bogoliubov theory for excitations in weakly interacting
Bose-Einstein gases. This is applicable in particular for
homogeneous Bose-Einstein condensates, and for static sit-
uations such as quantum fluctuations around the ground
state, or in thermal equilibrium. An extension of this
formalism to time-dependent situations and more general
trapping potentials is possible, but beyond our scope in
the present paper.
The Bogoliubov dispersion relation for quasiparticles

reads

ωk =
~

2m

√
k2(k2 + 2/ξ2). (A1)

This features a transition at the healing length

ξ =
~√

2mλn0
, (A2)

such that for small wave numbers k � 1/ξ the dispersion
relation is linear, ωk = ck, with the speed of sound c as
defined in (27), while for large wave numbers k � 1/ξ it
becomes quadratic, ωk → ~k2/(2m) + λn0/~.
For an initial thermal state with temperature T < Tc

introduced in (108), the spectrum of fluctuations is given

by

Sk(ti) =
1

2
+N in

k (T ), (A3)

while the rescaled density contrast correlation function
evaluates to [61]

Gnn(ti, L) =
2

n̄0

∫
k

kJ0(kL)

√
k2

k2 + 2/ξ2
Sk(ti)f̃G(k),

(A4)
where the linear dispersion relation

√
−h(k) = k has

been replaced by the corresponding expression of the
full Bogoliubov dispersion relation (A1). Note that in
the acoustic limit k � 1/ξ, we obtain Eq. (103) with
af replaced by ai. The integrand and its respective
correlator are shown in Fig. 11 for the acoustic vacuum
and the Bogoliubov vacuum with and without an initial
temperature T = 0.3Tc.

Appendix B: Experimental setup

The plots shown in Sec. IV are computed for the
following experimental parameters, setting ti = 0, out of
convenience. The condensate consists of N = 15 × 103

potassium atoms of mass m = 6.47008 × 10−26 kg and
extends up to a radius R = 30×10−6 m. The longitudinal
trapping frequency is 1.75× 103 s−1, while the initial and
final s-wave scattering lengths are as(ti) = 300a0 and
as(tf) = 50a0, respectively, where a0 denotes the Bohr
radius. The 2D critical temperature for an anisotropic
trap is calculated for these values at initial time, and
yields Tc = 82.41× 10−9 K. Moreover, the regularization
for the correlation functions is carried out with a
Gaussian of inverse standard deviation w = 5× 10−7 m.
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space (right panel). For small momenta k ⌧ 1/⇠ (indicated by the dashed vertical line), the Bogoliubov dispersion approaches
the acoustic result (dashed vs. dot-dashed and solid vs. dotted curves), while for large momenta k � 1/⇠ the temperature
dependence vanishes due to the exponential fall-off of the Bose-Einstein distribution N in

k (T ) for large k (dashed vs. solid and
dotted vs. dot-dashed curves). Moreover, the correlation function is clearly influenced by a nonvanishing temperature T = 0.3Tc,
while a dependence on whether one includes the full Bogoliubov dispersion is subleading due to the Gaussian cutoff in momentum
space as w ⇡ ⇠ at initial time.

FIG. 11. The influence of the full Bogoliubov dispersion relation (A1) and an initial temperature T = 0.3Tc is discussed at initial
time t = ti for the rescaled density contrast correlation function in momentum space (left panel) and in position space (right
panel). For small momenta k � 1/ξ (indicated by the dashed vertical line), the Bogoliubov dispersion approaches the acoustic
result (dashed vs. dot-dashed and solid vs. dotted curves), while for large momenta k � 1/ξ the temperature dependence
vanishes due to the exponential fall-off of the Bose-Einstein distribution N in

k (T ) for large k (dashed vs. solid and dotted vs.
dot-dashed curves). Moreover, the correlation function is clearly influenced by a nonvanishing temperature T = 0.3Tc, while a
dependence on whether one includes the full Bogoliubov dispersion is subleading due to the Gaussian cutoff in momentum space
as w ≈ ξ at initial time.
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