
Department of Physics and Astronomy

University of Heidelberg

Master thesis

in Physics

submitted by

Manuel S. Rudolph

born in Darmstadt

2020

Exploring and Benchmarking

Quantum-assisted Neural Networks

with Qubit Layers

This Master thesis has been carried out by Manuel S. Rudolph

at the

Kirchhoff-Institute for Physics

under the supervision of

Prof. Fred Jendrzejewski

and

Dr. Sebastian Schmitt

Honda Research Institute Europe GmbH

Erforschen und Bewerten von Quantenunterstützten
Neuronalen Netzwerken mit Qubit-Schichten:

Das Ziel dieser Arbeit ist es, anwendungsbezogene Quanten- und quantenun-
terstützte maschinelle Lernalgorithmen zu erkunden und mögliche Vorteile von
quantenunterstützten neuronalen Netzen mit Qubit-Schichten zu ermitteln.
Zwei Quanten-machinelle Lernalgorithmen werden vorgestellt, welche die
Codierungskapazitäten und Samplingvorteile von Qubits demonstrieren. Als
eine mögliche Erweiterung dieser generativen Modelle wird der Quantum-assisted
Generator (QaG) vorgestellt, welche eine Qubit-Schicht mit nachfolgenden klas-
sischen Schichten verknüpft. Der QaG liefert vielversprechende Anzeichen,
dass Quantenphänomene die Leistung von generativen neuronalen Netzwerken
verbessern können.
In dieser Arbeit werden außerdem Hamiltonian-basierte und Gatter-basierte
Umsetzungen von quantenunterstützten Autoencodern vorgestellt. Unter An-
wendung eines Hybrid-Trainingsansatzes, welcher Black-Box Optimierung und
herkömmliche Gradientenabstiegsverfahren kombiniert, wird gezeigt, dass der
Hamiltonian-basierte Autoencoder den MNIST Datensatz lernen kann und
dabei gute Generalisierungseigenschaften aufweist. Mehrere Ansätze werden
vorgestellt, wie die dargestellten quantenunterstützten Algorithmen erweitert
werden können, um mögliche Vorteile von Quantensystemen im Zusammenhang
mit künstlichen neuronalen Netzen weiter zu untersuchen.

Exploring and Benchmarking Quantum-assisted
Neural Networks with Qubit Layers:

The aim of this work is to explore practical implementations of Quantum and
Quantum-assisted Machine Learning algorithms and benchmark potential bene-
fits of utilizing quantum phenomena in Quantum-assisted Neural Networks with
qubit layers.
Two known approaches of generative Quantum Machine Learning algorithms are
revised to demonstrate the encoding capability and sampling benefits of qubits.
As one possible extension of those generative models, the Quantum-assisted Gen-
erator (QaG) is presented which implements a qubit layer coupled to subsequent
classical layers. The QaG provides promising indications that quantum phenom-
ena may enhance performance of a generative neural network.
This work also considers Hamiltonian-based and gate-based implementations of
quantum-assisted Autoencoders. Using an effective hybrid training approach con-
sisting of simultaneous application of conventional backpropagation and black-
box optimization, we show that the Hamiltonian-based Autoencoder is able to
learn the MNIST data set with good generalization properties. Several ap-
proaches to extend the presented quantum-assisted algorithms are proposed to
further investigate potential benefits of utilizing quantum systems in combination
with Artificial Neural Networks.

Contents

1 Introduction 3
1.1 Quantum Computation . 3

1.1.1 Background & Motivation . 3
1.1.2 Current and Near-Term Quantum Devices 4

1.2 Machine Learning . 5
1.2.1 Categorizations of Machine Learning Algorithms 5
1.2.2 Artificial Neural Networks . 6

1.3 Quantum Machine Learning . 8

2 Techniques 10
2.1 Spin-Hamiltonian . 10
2.2 The Variational Quantum Eigensolver and Exited States 11
2.3 Numerical Models . 13
2.4 Optimization Algorithm cma-es . 14
2.5 Relevant Training Sets . 15

2.5.1 Random Training Set . 15
2.5.2 Binomial Training Set . 15
2.5.3 Bars-and-Stripes Patterns . 16
2.5.4 MNIST Data Set . 17

3 Single Qubit-Layer Generative Algorithms 18
3.1 The Direct Variational Generator . 18

3.1.1 Model Description . 18
3.1.2 Training . 20
3.1.3 Sampling Benefits & BAS Random Walk 22

3.2 The Quantum Boltzmann Machine 27
3.2.1 Model Description . 27
3.2.2 Training . 28
3.2.3 Comparing Gradient Training and Optimizer Training 29
3.2.4 Error in Truncating the Boltzmann Density Matrix 30
3.2.5 Challenges for Groundstate Training 32

4 Quantum-assisted Generative Algorithms 37
4.1 The Quantum-assisted Generator . 37

4.1.1 Model Description . 37
4.1.2 Training . 39
4.1.3 Error in Truncating the Boltzmann Density Matrix 40

1

4.1.4 Benchmarking a Potential Quantum Advantage 42
4.2 Hybrid Training of Quantum-assisted Neural Networks 45

4.2.1 Description of the Hybrid Training Method 45
4.2.2 Improved Convergence Results 46

5 Input-Dependent Quantum-Assisted Artificial Neural Networks 48
5.1 The Hamiltonian-based Autoencoder 48

5.1.1 Model Description . 49
5.1.2 Training . 51
5.1.3 Bencharking a Quantum Advantage 52

5.2 The Hybrid-trained Hamiltonian-based Autoencoder 55
5.2.1 Model Description . 55
5.2.2 Training . 57
5.2.3 Training Analysis . 59
5.2.4 Learning the Full MNIST Data Set 61
5.2.5 Benchmarking a Potential Quantum Advantage 64

5.3 The Gate-based Autoencoder . 68
5.3.1 Model Description . 68
5.3.2 Training . 70
5.3.3 First Training Results . 70
5.3.4 Learning the Full MNIST Data Set 72

6 Conclusion & Outlook 75

7 Bibliography 79

A Benchmarking a Quantum Advantage on a QBM 86

B Quantum-assisted Generative Adversarial Network 88

C Thermofield Double State 90

2

1 Introduction

The aim of this work is the investigation of algorithms for near-term quantum com-
puting devices towards practical application in real-world problems. A very promis-
ing area of such applications is applying quantum computing techniques to machine
learning. Therefore, this works explores a multitude of Quantum and Quantum-
assisted Machine Learning algorithms to study potential benefits in implementing
quantum computing devices and quantum phenomena for practical application.
This chapter provides a brief introduction to the field of quantum computation as
well as potential and challenges of current quantum devices. Additionally, it intro-
duces the necessary concepts in Machine Learning and Artificial Neural Network
in particular that are required for the algorithms presented in this work. Finally,
the notion of Quantum Machine Learning is introduced to establish the direction of
research for this work.

1.1 Quantum Computation

Quantum computers are processing hardware which explicitly utilize quantum effects
for computation. This section provides a brief introduction to the field of quantum
computation, different implementations of quantum computing devices, and their
potential and challenges that are relevant to this work.

1.1.1 Background & Motivation

Even though theoretical descriptions of quantum computers have been proposed and
studied for roughly 40 years [11], significant progress in the practical implementation
of quantum computers has come in recent years[8] [22][33]. Richard Feynman postu-
lated in 1982 that in order to simulate quantum systems, one would need a quantum
computer [23]. Following this train of thought, the perspective of quantum comput-
ers is to perform calculations which classically require computational resources that
scale exponentially with the problem size [1][21]. Some quantum algorithms have
been developed which prove to have a theoretical speedup compared to the best
known classical algorithms. The most prominent examples are the Shor algorithm
for prime factorization in polynomial time [56], the Harrow-Hassidim-Lloyd (HHL)
algorithm for solving systems of linear equations with an exponential speedup [30]
and Grover’s algorithm for searching data bases [28]. Those would certainly have a
dramatic impact current technology if implemented in practice on a quantum com-
puters. This search for so-called quantum supremacy has again become an active
field of research as now the experimental implementations of quantum computers

3

are becoming better at an impressive rate and the first steps have been made to
demonstrating this in practice [8].

The reason why there is the strong belief that quantum computing could provide
drastically more efficient computation is related to a few aspects of quantum ma-
chanics. Conventional computers and classical processing units work with bits to
perform calculations or store information. Bits are binary, i.e. can be 0 or 1. The
quantum analog to the bit is the qubit (quantum bit). It is a quantum two-level
system which can be in a superposition of 0 and 1. In a n qubit system, the compu-
tational basis thus scales exponentially with 2n. Additional hopes are derived from
quantum entanglement which may allow to encode correlations between different
quantities in qubits very efficiently. With precise control of the qubit system, one
might be able to significantly enhance conventional computation in certain applica-
tions where an interplay of superposition and entanglement prove to be vital.
In practical implementations, a lot of expected benefits are currently made impracti-
cal because of imperfect control of qubit systems and challenges concerning efficient
loading of data into a quantum computer and read-out of the qubit states [1][21].

1.1.2 Current and Near-Term Quantum Devices

The three most common types quantum devices or quantum hardware are ana-
log quantum simulators, quantum annealers, and gate-based quantum computers.
When using the term Quantum Computer, one usually refers to the latter gate-based
devices. All approaches of implemeting quantum hardware aim to make use of fun-
damental quantum properties such as superposition and entanglement to perform
calculations or routines that are otherwise unfeasible for classical computers.

Analog quantum simulators are highly precise quantum experiments. They im-
plement a specific Hamiltonian with corresponding interactions and are therefore
generally not suited for a wide range of problems. In other words, they are not uni-
versal in their calculations but can perform complex simulations with high fidelity
in the case that the implemented Hamiltonian fits the task [7][16][62].

Quantum annealers use adiabatic state transfer to solve problems with discrete vari-
ables such as groundstates of spin-Hamiltonians and classical binary optimization
problems. The quantum hardware has a physical temperature which leads to a
thermal ensemble of solutions. Quantum annealing is a heuristic form of quantum
simulation that is able to create complex quantum states but there so no conclusive
evidence that it can provide a significant speedup compared to best known classical
algorithms [5][10][14][60].

Gate-based quantum computers implement individual quantum two-level systems
as qubits which can be addressed applying electromagnetic pulses of different fre-
quency and duration. In reference to their classical equivalent, those operations

4

are called quantum gates. The specific implementation of the qubits, as well as the
physical interactions utilized by the quantum gates, depend on the specific quantum
hardware. Common implementations are Ion-trap quantum computers [24][34][36],
superconducting qubit quantum computers [8][22][33] and optical lattice quantum
computers [15][57]. Calculations on such gate-based quantum computers can be uni-
versal, i.e. quantum Turing equivalent, and are thus referred to as universal quantum
computers.

All types of current quantum devices have advantages and disadvantages but gen-
erally suffer from the following problems:
Scalability, noise, fidelity and loss of coherence. This is especially true for gate-based
quantum computers because analog quantum simulators and quantum annealers sac-
rifice universality for good performance on their specific application.
Most algorithms presented in this work are agnostic to the quantum hardware used
as they are Hamiltonian-based. Those that are not Hamiltonian-based are gate-
based. It is reasonable to assume that the algorithms can be adapted to run on
analog quantum simulators using their specific operations and interactions. The al-
gorithms are designed to be performed on near-term quantum devices and be robust
against current challenges of limited qubits, significant noise and shallow quantum
circuits.

1.2 Machine Learning

Machine Learning is a general term for algorithms and statistical models that per-
form tasks which they are not explicitly programmed for. Results or actions are
based on collected data or past experience and not pre-determined behavior. Ma-
chine Learning has a wide and rapidly growing range of applications in data sciences
like image- and language processing, recommendation systems, optimization, and
many more. The extraction of vital experience and information is commonly done
by training a Machine Learning model on known data. In one form or another, all
machine learning approaches follow a parametrized ansatz where training consists
of tuning the model’s parameters to fit the training cases.
A very broad and highly useful introduction to Machine Learning specifically for
Physicists can be found here [43].

1.2.1 Categorizations of Machine Learning Algorithms

One of the main categorizations of Machine Learning algorithms is into supervised
and unsupervised Machine Learning algorithms. Crucial to the differentiation is
the amount of a-priori or external information the model is given when learning a
data set. If data X comes with a label Y , the learning method is called supervised
learning. A label can be the correct content of an image, the correct grouping of
data points, the right response to an external stimulus, etc. Supervised Machine

5

Learning models are not the focus of this work.
If the training set is not labeled, which is naturally the case in most collected data,
one has to revert to unsupervised Machine Learning algorithms. Unsupervised Ma-
chine Learning models extract information and patterns based on the data itself.
All quantum and quantum-assisted Machine Learning algorithms in this work are
unsupervised. Autoencoders are popular type of unsupervised Machine Learning
algorithm. They are Artificial Neural Networks that learn efficient low-dimensional
representation of data [13][25][63].

Another common categorization divides Machine Learning algorithms into discrim-
inative and generative approaches. Many discriminative algorithms are inherently
supervised. The main goal of discriminative algorithms is to model the conditional
probability P (y|x) which defines a mapping of a data point x to a label y. This
mapping creates boundaries that discriminate between data points. Usually these
algorithms are trained on training data which are viewed as a good subset of all
realistic data samples. The decision boundaries should be generalizable to new data
in order to decide on a likely label for a previously unseen data point. Overfitting
is a very common notion in Machine Learning and describes a model fitting its pa-
rameters too tightly to the training data such that the model does not generalize
well to previously unseen data.
Generative Machine Learning algorithms aim to learn a parametrized approxima-
tion of the probability distribution P (x) underlying the target data and allow to
draw new samples from that learned distribution. The goal of a generative model
is to be able to generate samples which are statistically indistinguishable from the
training data used. Generated samples need not be a subset of the training set. In
fact, it is generally a desirable property of generative models that they generalize
learned systematic patterns in the training data and from that generate original
samples.

1.2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) consist of a network of nodes and edges. Com-
monly, the nodes are structured in layers which are inter- but not intra-connected
by edges. Fig. 1.2.1 shows a basic ANN architecture which is the foundation for the
quantum-assisted Neural Networks described in this work with annotated nomencla-
ture of the most significant components. The nodes of an ANN can have a variable
value which is called activation. In a feed forward neural network, the first layer is
initiated with an input that is propagated through the rest of the network. This
is done by applying non-linear transformations between layers. In the most basic
ANNs, the activation v of the subsequent layer with values vi is calculated via

v = ζ
(
Wu + b

)
vi = ζ

(∑
j

Wijuj + b
) (1.1)

6

Figure 1.2.1: General example of the network architecture of an Artificial Neural Network
(ANN). Activations for each layer depend on the weights W of the edges between the
layer and the previous layer, biases b of the nodes, and a non-linear activation function
ζ. Propagation of the activation here happens from left to right. Not every ANN has an
input layer but always an output layer. Additional intermediate layers do not necessarily
bare direct interpretation in terms of the data but they allow for more complex non-linear
transformations and are generally expected to learn essential features of the data.

where ζ is a non-linear function called the activation function and the input to
that activation function is calculated as a weighted sum of the activations u in the
previous layer plus an individual bias bi. The weights Wij correspond to the edges
between the nodes i and j in the network. Most of the ’magic’ of ANNs lies in the
non-linear transformation of data between layers. The choice of activation function
closely depends on the type of ANN and the purpose of the layer.

Training an Artificial Neural Network consists of fine-tuning the network param-
eters, namely the weights W and the biases b, such that the output is as desired.
Consequently, one needs to define a cost- or error-function which measures how
good the result is. The resulting high-dimensional cost/ fitness landscape is used to
optimize the parameters. Typically, the parameters of an ANN receive a gradient
descent update in each iteration of training where the gradient of the cost function
with respect to the respective parameter is calculated via backpropagation. Back-
propagation is a term for the application of the chain rule in the calculation of the

7

derivative in order to the define the gradient of the cost/error in deeper layers of
the network.

The training of a Neural Network can be viewed as high-dimensional point fit-
ting. The parameters of the network are tuned such that they provide the best
mapping between input and output. It is simple to understand that given enough
parameters, any number of data point with arbitrary structure can be fitted. This
is called overfitting. As a consequence of overfitting, models usually perform excep-
tionally well on the training set arbitrarily but poorly on unseen data. Overfitting
thus reduces generalizability which is one of the intrinsic motivations to performing
Machine Learning.
Common practices to prevent overfitting, for example regularization and dropout,
weaken the model during training such that it has to focus on the most essential
structural information of the training data with which it still performs well on new
data. Regularization usually penalizes large network parameters which would indi-
cate overfitting [38][58]. This reduces the expressivity of a model but can also help
convergence because it also reduces complexity. Another kind of Regularization is
called dropout. In dropout, random weights are set to zero during any training iter-
ation so that the network learns a more robust model of the data [64].

A lot of choices are to be made when setting up and training an Artificial Neural
Network, namely the number of layers, the amount of nodes per layer, connectivity
between the layers, the learning rate for the gradient descent, number of training
iterations, dropout rate, and many more. Those external parameters are called
hyperparameters. The choice of hyperparamters can largely impact the training
performance of an ANN and its generalization capability.

1.3 Quantum Machine Learning

With the growing interest in Machine Learning in current years, many physicists
have moved towards implementing Machine Learning algorithms in order to enhance
results of quantum experiments or improve our understanding of physical systems
[17][20][54][59]. This type of Quantum Machine Learning is not studied in this work.
Instead, in this work we focus on studying the implementation of quantum systems
in order to enhance conventional Machine Learning algorithms. It has been proposed
that an interplay with Deep Learning and other Machine Learning algorithms is one
of the most promising applications for current and near-term quantum computing
devices [1][4][9][12][21][42]. The goal with such Quantum or Quantum-assisted Ma-
chine Learning algorithms is not to perform large calculations on quantum devices
but to only perform crucial sub-routines of a larger overall algorithm that would
otherwise be very hard or intractable.

8

The general direction of this work is to make use of fundamental quantum properties
that near-term quantum devices offer while respecting their limitations. For that,
we implement qubits in unsupervised Quantum Machine Learning algorithms and
more specifically in Artificial Neural Networks (ANNs). The networks may consist
of just a singular qubit layer or a larger overall network with classical layers and one
qubit layer at an essential position.
One fundamental property of a quantum system is that when measured, the system
always collapses by random projection onto one basis state. This proposes quantum
systems as prime candidates in generative Machine Learning algorithms where com-
plex probability distributions can be encoded in quantum wavefunctions and then
sampled by measurement of the state. Classical sampling is usually, and without a
priori knowledge of the target distribution, either global but inefficient or efficient
but local [12][42]. Recently, a claim of quantum supremacy with a quantum random
number generator on 53 qubits has been published [8]. Though it is not yet clear
how strong the quantum advantage is for that case, it demonstrates the growing
capabilities of quantum computers and their application in generative tasks.
A somewhat different motivation for implementing qubits in ANNs is to potentially
benefit from quantum advantages which arise from entanglement in the system.
Conventional ANNs rely on a large number of linear and non-linear transformations
between layers and a quantum system might aid the model in extracting essential
structure by being able to represent highly-correlated data. Also, by implementing
a small number qubits in a deep layer of an ANN, one minimizes the number of
qubits required to put near-term quantum devices to practical use.

9

2 Techniques

This chapter showcases the techniques and concepts that re-occur throughout this
work. It shows the spin-Hamiltonian on which all Hamiltonian-based Quantum Ma-
chine Learning algorithms in this work based are on. The Variational Quantum
Eigensolver (VQE) is a classical-quantum hybrid algorithm which allows to find ap-
proximations of eigenvalues and eigenstates of Hamiltonians on near-term gate-based
quantum computers. We also show numerical models which are used to implement
and simulate the Hamiltonian-based models and the VQE. Many Quantum Machine
Learning algorithms studied in this work are trained with the help of the Covari-
ance Matrix Adaptation Evolution Strategy (cma-es) [29] optimization algorithm on
training sets of different types which is also described in this chapter. The code and
numerical models that have been used for this work can be found here [51][52].

2.1 Spin-Hamiltonian

Spin is the intrinsic angular momentum of elementary quantum mechanical particles
and it can take two possible discrete measurement states for spin-1/2 particles. Here,
we denote these two states by s ∈ {0, 1}. In the classical interpretation of spins,
they can be viewed as vectors in euclidean space whereas in quantum mechanics,
spins are hermitian operators which relate to the observable of spin expectations.
They thus encode a quantum two-level system which in this work are interpreted as
qubits (quantum bits).
In a n-spin system, the basis states are s ∈ |{0, 1}⊗n〉, e.g. in a 2-spin system
s ∈ {|00〉, |01〉, |10〉, |11〉}. The quantum state of the spin system is a general super-
position of the spin basis states si like

|ψ〉 =
∑
i

cj|sj〉. (2.1)

with
∑

i |cj|2 = 1. The coefficients cj therefore encode a normalized probability dis-
tribution over the basis states. When measured, the quantum state collapses onto
one of the basis states |si〉 with probability |cj|2. The random projection upon mea-
surement is a fundamental quantum property and utilized in every implementation
of Quantum Machine Learning algorithms in this work.
Quantum states are called entangled if the total state of the quantum state |ψtot〉 can-
not be written as a product of the individual quantum states like |ψtot〉 = |ψ1〉|ψ2〉.
In that case, the measurement outcome of |ψ1〉 depends on the measurement |ψ2〉
and vice-versa. For a more detailed read on Quantum Mechanics and spin systems,
we refer to books in German and English language [27][46].

10

The spin-Hamiltonian that is used throughout this work is

H =
∑
ij

σzi Jijσ
z
j +

∑
i

hziσ
z
i +

∑
i

hxi σ
x
i . (2.2)

Here, σz, σx are the z- and x- Pauli matrices respectively, J are pair-wise interac-
tions of the spins and hz, hx local fields along the z- or x- axis.
Without the transverse field term, the Hamiltonian is diagonal in z-basis, which is
the computational basis in this work, and represents a classical Ising model [40]
with all-to-all interactions. Consequently, eigenstates of the diagonal Hamiltonian
are single basis states, e.g. |1100〉 in a 4-spin system. The Hamiltonian groundstate
is the spin configuration with the lowest energy and next higher eigenstates are spin
configurations with the next higher energies. This model does not allow for super-
position inside eigenstates and they are thus not entangled in computational basis.
With the transverse field, the Hamiltonian is no longer diagonal in computational
basis. Eigenstates are in general superpositions of basis elements like in Eq. (2.1)
and are generally entangled.

For finite-temperature, the spin system tends towards the groundstate but the tem-
perature induces excitations to higher eigenstates. In this case, the probability for
each spin configuration s follows the Boltzmann distribution

Pβ(s) =
e−βE(s)

Z
(2.3)

where β = 1
kBT

is the inverse temperature and Z =
∑

s e
−βE(s) the partition function.

2.2 The Variational Quantum Eigensolver and Exited
States

The Variational Quantum Eigensolver (VQE) is a classical-quantum hybrid algo-
rithm to find upper bounds on groundstate energies of Hamiltonians [22][33] or
optimize classical cost-functions on gate-based quantum computers [49]. The qubit
state that minimizes the energy of a Hamiltonian is therefore an approximation of the
Hamiltonian’s groundstate. The VQE implements quantum resources in conjunc-
tion with classical variables to solve optimization problems with shallow quantum
circuits on noisy near-term quantum devices.

The goal of the VQE is to variationally minimize an objective function C over a
parametrized wavefunction ansatz |ψ(θ)〉. The variational functional reads

E =
〈ψ(θ)| C |ψ(θ)〉
〈ψ(θ)|ψ(θ)〉

(2.4)

11

State preparation for the qubits is performed by a parametrized quantum circuit
ansatz U(θ) which can consist of arbitrary single- or multi-qubit gates:

|ψ(θ)〉 = U(θ) |0〉⊗n (2.5)

For a given set of parameters θ, the quantum state is prepared and measured to
calculate qubit expectations and correlations. Those expectations are used to eval-
uate an the objective function C. In this work, the objective function is a spin-
Hamiltonian C ≡ H as described in Sec. 2.1. An external classical feedback loop
performs the optimization of the circuit parameters θ such that the the solution to
E is the state of lowest energy, i.e. the groundstate of the Hamiltonian H. Here,
the VQE is implemented using the Simultaneous pertubation stochastic approxima-
tion (SPSA) optimization algorithm [22] which uses only two function evaluations
per VQE iteration. This is very beneficial for practical use on near-term quantum
devices.

A common VQE ansatz is to implement quantum circuits is

|ψ〉 =
∏[

U (j)
s (θ(j)) UE

]d
j=1
U (0)
s (θ(0)) |0〉⊗n. (2.6)

It consist of layers of parametrized single-qubit gates Us and entangling gates UE. A
depth parameter d controls the expressivity and complexity of the state preparation
by setting the number of rotation parameters and entangling operations.
The single-qubit rotation unitaries Us in this work consist of parametrized Y and Z
rotations Us(θ) = RzRyRz and the entangling operations UE are pair-wise CNOT
gates in a linear chain between neighboring qubits. The set of gates does not neces-
sarily have to be universal for an approximate or even exact solution. The entangling
gates can be any gates which act on more than one qubit as long as they generate
”enough” entanglement. This again depends on the problem. The exact gates used
are arbitrary and most likely hardware-dependent, i.e. which gates are most natu-
rally implemented on the quantum device.

On a qubit quantum computer, it is also possible to iteratively find the kth eigenstate
|ψk〉 of a Hamiltonian with the VQE [48]. This is done by variationally minimizing
the energy of the state and adding an overlap constraint to previously found lower
eigenstates

Ek =
〈ψk|H|ψk〉
〈ψk|ψk〉

+
k−1∑
i

βi|〈ψk|ψi〉|2 (2.7)

The first exited state is the state that minimizes E1 and is orthogonal to the ground-
state. This can be repeated iteratively for each higher eigenstate as long as βi > 0
is larger than the energy gap between the kth and the ith eigenstate. For a diagonal
Hamiltonian, eigenstates of the Hamiltonian contain only one basis element with no

12

phase-dependence. Therefore, overlap with lower eigenstates can be calculated by
measuring expectations in each eigenstate. For a non-diagonal Hamiltonians, this is
no longer possible and one needs to apply the inverse state preparation unitary of
lower eigenstates and measure the expectation of the |0〉⊗n state.

With this method, it is in principle possible to find multiple eigenstates simulta-
neously. Instead of starting successive searches for higher eigenstates, one can start
all at once and modify the orthogonality constraint to the current state |ψ(t)

i 〉 of the
other searches on iteration t. Ek in eq. 2.7 is therefore changed to and iteration-
dependent energy functional E tk Initial tests have shown that this method generally
works but it is not further pursued in this work.

2.3 Numerical Models

The Quantum Machine Learning algorithms in this work are not implemented on
quantum devices. We use two numerical models in order to simulate the algorithms
which are designed respecting the capabilities and limitations of near-term quantum
computers. The models used are the Qasm simulator from IBM Q’s qiskit frame-
work [3], and a self-built simulator which is based on exact diagonalization with the
Python quspin package [61].

The qiskit Qasm simulator is a noisy quantum circuit simulator backend. In this
work, it is used for two types of applications: To implement algorithms which di-
rectly implement quantum circuits, and to find eigenstates of Hamiltonians with the
Variational Quantum Eigensolver (Sec. 2.2). The Qasm simulator is close to current
capabilities of gate-based quantum computers, especially when incorporating gate
fidelities, read-out error and effects of de-coherence. For this work, only Gaussian
noise on the gates and read-out are included in the simulation. A review of other
quantum simulation platforms can be found here [37]

For most of the Hamiltonian-based algorithms in this work, we designed a numeri-
cal model of the qubit system which relies on the quspin Python package to exactly
calculate Hamiltonians eigenstates. Full VQE searches are either slow or unreliable
because they require a varying number of iterations until convergence. By utilizing
this exact method for calculating eigenstates, we shift the focus of research from the
VQE algorithm to studying the properties of the Quantum Machine Learning mod-
els directly. With the quspin package, Hamiltonians with n < 8 can be diagonalized
fast enough for the simulations presented here.
It has to be noted that the results gained from exact diagonalization are of higher
quality than the expected results of the VQE, especially given limited circuit depth
and gate fidelity. Still, they are in principle not unreasonable for near-term quantum
devices that directly implement Hamiltonian systems.

13

Figure 2.4.1: Schematic illustration of the cma-es algorithm on a convex objective-
function. The population of the evolutionary strategy are represented as black dots and
the multivariate normal distribution from which they are sampled is sketched in orange.
Taken from [55].

The code used for the simulations can be viewed on github [51][52]. Generally, to
simulate the measurement of qubits that populate the eigenstates of a Hamiltonian,
we construct the probability of a measurement or quantum sample s through the
probability P (λ) that the qubits are in eigenstate λ and the conditional probability
P (s|λ) for the measurement s given that the system is in eigenstate λ:

P (s) =
∑
λ

P (s|λ)P (λ). (2.8)

P (λ) is calculated with the density matrix ρ which describes the quantum system
via P (λ) = 〈λ|ρ|λ〉. P (s|λ) = |〈s|λ〉|2 is given by the amplitudes in eigenstate |λ〉
which are calculated by quspin. Finally, we construct the probability distribution by
assigning each probability P (s) an interval ⊂ (0, 1) and drawing a random number
∈ (0, 1) to draw a quantum sample s with the correct probability.

2.4 Optimization Algorithm cma-es

The optimizer used in this work is the Covariance Matrix Adaptation Evolution
Strategy (cma-es) [29]. cma-es is an evolutionary algorithm for difficult non-linear
non-convex black-box optimization. As an evolutionary strategy, it is a stochastic
and derivative-free numerical optimization algorithm which is based on mutation
and re-combination of previous evaluations.
For a given objective- or cost-function C over a parameter space RN , cma-es draws
λ stochastic samples according to a multivariate normal distribution in RN . The
λ function evaluations are called the population of the evolutionary algorithm. De-
pending on the performance of the population members, the means and variances

14

of the multivariate normal distribution are adapted to provide faster convergence.

In this work, the cma-es optimization algorithm is used to train parameters in
Quantum Neural Networks or Quantum-assisted Neural Networks. It is applied on
models with a small or moderate number of parameters, i.e. ≤ 50, or a subset of
parameters in a bigger model. Generally, the black-box optimizer is used in cases
where efficient calculation of derivatives with respect to model parameters is not
possible.

2.5 Relevant Training Sets

The Quantum Machine Learning models throughout this work are trained on dif-
ferent training sets. Training sets are chosen accordingly to characterize a model’s
adequacy to learn data with different complexity and structure. The training data
presented in this section, range from random binary samples to 28x28 continuous-
valued images of hand-written digits.
For the generative Quantum Machine Learning algorithms described in this work,
the distribution of training samples in the training set acts as target distribution for
the model. In the case of the input-dependent algorithms, each training set sample
is input separately with a distinct expected model output.

2.5.1 Random Training Set

To benchmark a model’s ability to tune its parameters and learn arbitrary data
distributions, we generate random training sets. Random training sets are not ex-
pected to show any systematic structure which could be learned so one is essentially
measuring a model’s ablity to perform overfitting (see Sec. 1.2.2). In practice, over-
fitting not generally viewed as a desirable property of a model but in this work it is
used to quantify a models expressivity and flexibility.

The random training samples are drawn from a flat distribution of binary or contin-
uous values. In the case of a binary training set D for a model with 4 output nodes,
the training samples d, are generated by drawing random numbers d′ ∈ [0, 15] and
converting them into base-2 samples d ∈ [0000, 0001, ..., 1111].
For continuous-valued random samples, four random numbers di ∈ (0, 1), i = 0, 1, 2, 3
are drawn to construct d = [d0, d1, d2, d3]. The values can be interpreted as gray-scale
where 0 signifies black and 1 is white.

2.5.2 Binomial Training Set

In this work, the binomial training set is used for generative models described. Con-
trary to the random data in Sec. 2.5.1, this training set arguably requires less degrees
of freedom to fully characterize and learn. When considering an ordered histogram

15

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty

Binomial Training Set

Figure 2.5.1: Probability distribution of a binomial training set for a model with 5 output
nodes. Samples are pulled from a binomial distribution around the middle of the binary
range (0, 25-1).

Figure 2.5.2: Visual interpretation of Bars-and-Stripes (BAS) patterns. The pixels of
the BAS patterns form horizontal or vertical ’Bars’ and ’Stripes’. This training set has
25% probability for each BAS pattern and zero probability for every other sample. It can
only be used for Machine Learning models with 4 output nodes.

of n-bit binary samples, the training set contains a binomial distribution around the
middle of the histogram. Fig. 2.5.1 shows the probability distribution for a binomial
training set for a model with 5 output nodes. 01111 is the most frequent sample in
that training set with others being less frequent.
To generate a n-bit binomial training set, integers are drawn from a binomial dis-
tribution with a mean of 2n

2
and then converted to n-bit binary samples.

It is also possible to generate several binomial distributions in one training set with
different means and amplitudes. This generally preserves systematic structure in
the training set while increasing the degrees of freedom required to parametrize the
multi-modal distribution.

2.5.3 Bars-and-Stripes Patterns

The Bars-and-Stripes (BAS) patterns can be used as a training set for Machine
Learning models with 4 output nodes. The BAS training set consists of the samples
BAS = {1100, 0011, 1010, 0101}. When visualized in an ordered 2x2 pixel image like
in Fig. 2.5.2, they give rise to vertical or horizontal lines. Unlike for the random or

16

Figure 2.5.3: First 16 images of the MNIST hand-written digits training data set [39].
Each image consists of 28x28 continuous gray-scale valued pixels. The MNIST set is a
wide-spread standard training data set for benchmarking and comparing many kinds of
Machine Learning algorithms.

binomial training sets in Secs. 2.5.1 & 2.5.2, the BAS training set has exactly zero
probability for 12 out of 16 4-bit samples and is thus a training set with distinct
gaps in the distribution. Interestingly, it is also a symmetric training set where every
pixel in the images is equally likely to be black or white. The determining factor in
the BAS patterns which has to be learned are the correlations between the pixels.
The BAS training set is a deceptively complex data set with rich possibilities and
challenges for the Quantum Machine Learning algorithms in this work.

One can include the samples 0000 and 1111 into the BAS set as they technically
include zero- and two- bars and stripes respectively but they are not included in this
work.

2.5.4 MNIST Data Set

The MNIST data set is a large data set of hand-written digits [39]. It is one of
the standart data sets for benchmarking Artificial Neural Networks and Machine
Learning algorithms in general. It contains 60.000 training samples and 10.000 test
samples with a 28x28 pixel resolution and gray-scale values ∈ [0, 1]. The first 16
images of the MNIST training data set can be viewed in Fig. 2.5.3. The MNIST
samples have a lot of structure which is intuitive for humans who are used to the
Arabic numerals and that is also learnable by Machine Learning algorithms. Even
though there is only ten different digits in the MNIST data set, it offers a lot of
variation in the written style. The task of any Machine Learning algorithm trained
on this data set is to identify the most significant structural elements for each digit.

The largest quantum-assisted Machine Learning algorithms in this work are trained
with a subset or even the the full 282 = 784 pixel gray-scale images. For networks
with a smaller number of output nodes, the images are re-sized by the Python
scipy.misc.imresize() function.
Any training set consisting of MNIST samples can be continuous-valued or binary.
If binary, the pixel values are calculated by thresholding at the value of 0.5.

17

3 Single Qubit-Layer Generative Algorithms

This chapter revises and studies two known generative Quantum Machine Learning
algorithms which implement qubits. The motivations for using qubits in a genera-
tive Machine Learning algorithm are discussed in Sec. 1.3 and are mainly reflected
in the following two questions: Will the use of qubits make sampling learned proba-
bility distributions more efficient, and can the model utilize quantum effects to gain
a performance benefit?
The algorithms presented in this chapter follow two different implementations of
generative modeling in a single qubit layer. The first model, the Direct Variational
Generator (DVG) [9], is a simple generative quantum algorithm and in this work
is used to demonstrate the sampling benefits one can expect from implementing
qubits in generative models. The second algorithm presented is the Quantum Boltz-
mann Machine (QBM)[6]. It is a widely studied generative algorithm in the field of
Quantum Machine Learning [10][42] on which essential parts of this work are based
on.

3.1 The Direct Variational Generator

The first generative quantum algorithm studied in this chapter is the Direct Vari-
ational Generator (DVG). It was first introduced as data-driven quantum circuit
learning (DDQCL) model [9]. The aim of this algorithm is to learn a parametrized
qubit wavefunction which approximates the probability distribution of a target data
set. The qubits can then be measured to provide efficient sampling of the encoded
distribution. With this model, we show improved sampling capabilities of generative
quantum models and improve our understanding of state preparation in gate-based
quantum devices. The relevant code for the simulations in this section can be seen
and tested on github [51][52].

3.1.1 Model Description

The Direct Variational Generator aims to learn a parametrized qubit wavefunction
ψ such that the distribution of measured quantum samples s approximates a target
data distribution. The model distribution for the DVG is

Pψ(s) = |〈s|ψ〉|2 (3.1)

The quantum circuit to prepare the quantum state |ψ〉 is a variational state prepara-
tion protocol equivalent to the state preparation in the Variational Quantum Eigen-

18

Figure 3.1.1: Visual representation of the variational state preparation circuit of the
Direct Variational Generator. The state preparation is analogous to the approach in the
Variational Quantum Eigensolver (Sec. 2.2). One layer of the circuit consists of single-
qubit rotations and entangling operations between qubits. With increasing circuit depth d,
as more single-qubit rotations and richer entanglement becomes available, complex quan-
tum wavefunctions can be approximated with increasing quality. In the Direct Variational
Generator, the projection of the qubit wavefunction encodes the data distribution.

solver (see Sec. 2.2). State preparation is performed with a quantum circuit con-
sisting of parametrized single-qubit gates and entangling gates:

|ψ〉 =
∏[

U (j)
s (θ(j)) UE

]d
j=1
U (0)
s (θ(0)) |0〉⊗n (3.2)

Fig. 3.1.1 offers a visual representation of the state preparation circuit for the DVG.
The single-qubit unitary Us may consist of any single-qubit gates which offer suf-
ficient degrees of freedom for the quantum state and the entangling operation UE
can consist of any sequence of pair-wise, multi-qubit or global entangling gates that
create entanglement between qubits. The circuit depth d determines expressivity
of the model and the degree of potential approximation of a target distribution. In
practice, the circuit depth is limited by systematic errors accumulating over time
and with a large number of imperfect gates.

In this work, the Direct Variational Generator is implemented on the qiskit Qasm
simulator backend (see Sec. 2.3). The single-qubit unitaries Us are implemented
through a Z-rotation, a Y -rotation and another Z-rotation, i.e. their matrix expo-
nential is U

(j)
s = e−iθ

(j,2)σze−iθ
(j,1)σxe−iθ

(j,0)σz where σz, σx are Pauli matrices. These
parametrized rotations offer full flexibility for each qubit’s state. The first Z-rotation
of the first layer is not implemented because the initial |0〉⊗n state is an eigenstate of
the operator and does not change when applied. The single-qubit gates used should

19

Figure 3.1.2: Sketch tomographies of an initial, an intermediate and a fully trained model
distribution of a Direct Variational Generator. The model is initialized in |0〉⊗n state and
the rotation parameters of the variational state preparation are optimized during training
to learn a wavefunction whose projection approximates the target distribution. In this
case, the taget distribution is a binomial distribution.

generally be gates that are naturally implemented in the quantum hardware that
the algorithm is run on. The entangling operations UE here are a linear chain of
pair-wise CNOT gates between consecutive qubits. Also the entangling gates and
connectivity between qubits should be adapted to a given quantum device.

3.1.2 Training

Training the Direct Variational Generator consists of tuning the rotation parame-
ters θ in Us such that the model distribution Pψ best approximates a target data
distribution PD. This is commonly done by minimizing a cost-function which for
the DVG is the negative log-likelihood (NLL)

L = −
∑
s∈D

PD(s) log max(ε, Pψ(s)). (3.3)

The target data distribution PD is represented by a training set which is assumed to
follow the same distribution. The singularity of the logarithm at Pψ = 0 is bounded
by an ε = 10−8. The NLL provides is a measure for the difference between two dis-
tributions. Minimizing it ensures that the data distribution PD is well parametrized
by the model distribution Pψ. In other words, the distribution of quantum samples
s in the DVG is close to the distribution of s in the training set.
The training protocol consists of a classical optimization loop which proposes and
optimizes the rotation parameters in the quantum circuit in order to minimize the
NLL. The optimizer used for training the DVG is the cma-es algorithm (see Sec.
2.4). In fact, the training procedure is equivalent to the work-flow of the VQE al-
gorithm (Sec. 2.2).

Fig. 3.1.2 shows sketch tomographies of an initial DVG model in the initial |0〉⊗n
state, an intermediate model and a fully trained DVG model. The final distribution

20

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Pr

ob
ab

ili
ty

quantum model
training set

Depth = 0

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty

quantum model
training set

Depth = 1

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty

quantum model
training set

Depth = 2

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ili

ty

quantum model
training set

Depth = 0

00
00

1
00

01
0

00
01

1
00

10
0

00
10

1
00

11
0

00
11

1
01

00
0

01
00

1
01

01
0

01
01

1
01

10
0

01
10

1
01

11
0

01
11

1
10

00
0

10
00

1
10

01
0

10
01

1
10

10
0

10
10

1
10

11
0

10
11

1
11

00
0

11
00

1
11

01
0

11
01

1
11

10
0

11
10

1
11

11
0

11
11

1
00

00
0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ili

ty

quantum model
training set

Depth = 1

00
00

0
00

00
1

00
01

0
00

01
1

00
10

0
00

10
1

00
11

0
00

11
1

01
00

0
01

00
1

01
01

0
01

01
1

01
10

0
01

10
1

01
11

0
01

11
1

10
00

0
10

00
1

10
01

0
10

01
1

10
10

0
10

10
1

10
11

0
10

11
1

11
00

0
11

00
1

11
01

0
11

01
1

11
10

0
11

10
1

11
11

0
11

11
1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ili

ty

quantum model
training set

Depth = 2

Figure 3.1.3: Trained Direct Variational Generator models by the Variational Quan-
tum Eigensolver algorithm and different circuit depths. More depth translates in more
entanglement and degrees of freedom for the quantum state. Entangling operations in
the quantum circuit are definitely required for good approxmiation. In both cases, the
binomial distribution and the bi-modal distribution, the deeper quantum circuit provides
more degrees of freedom and smother distributions.

is a good approximation of a binomial distribution. In practice, the single-qubit
rotation angles are not initialized as zero but instead for example randomly.

Given a large enough depth d for the variational state preparation, the wavefunc-
tion is highly expressive and is expected to model arbitrary distributions. For a
more shallow VQE curcuit, samples that are not in the training set will appear as
artifacts of insufficuent entanglement. Fig. 3.1.3 shows the effects of different cir-
cuit depths d in a DVG with 5 qubits for two different training set distributions -
a single-binomial in the middle of the tomography and double-binomials at differ-
ent locations and different height (see Sec. 2.5.2 for details). It is apparent that a
larger depth parameter d increases the quality of the approximation of the target
distribution. Deeper circuits offer more degrees of freedom through more param-
eters and entanglement. Without entangling operations (d = 0), non of the data
sets can be learned with high quality. It has to be noted, that the model adapts to
the degrees of freedom available and finds the best solution for it, as seen for the
double-binomial. The single-binomial distribution in Fig. 3.1.3 is nicely learned by
a circuit of depth = 1 which offers just enough degrees of freedom for the symmetric
target tristribution. The double-binomial training set is also learned in somewhat
low resolution. d = 2 already offers detail and higher resolution for both training
sets.

21

This generative model is not expected to generalize from training data in a way
that is generally desirable for Machine Learning models (see Sec. 1.2). It is possible
that low-resolution approximations of distributions with shallow circuits are useful
for generalizability and to learn only the most essential features in data though it
has to be stressed that the exact structure of the result is highly dependent on the
encoding of the data, e.g. the sorting of the binary bit strings. The effects resulting
from lacking circuit depth depend on the respective product state artifacts which
may change strongly with a different bit-representation of the data.

Generally, more errors accumulate in deeper state preparation circuits with large
number of gates. For our simulations on the Qasm simulator (Sec. 2.3), those ef-
fects are not respected. Another factor not respected in these simulations is the loss
of coherence in the quantum state over time. A final consideration in implement-
ing a DVG is that the number of parameters increases linearly with d. A classical
optimizer will consequently have increasing difficulty training the algorithm.

3.1.3 Sampling Benefits & BAS Random Walk

One main motivation for implementing qubits in generative models is to utilize the
sampling benefits [21][42]. ’Sampling’ means drawing data samples from the model
where the distribution of the samples follows a given probability distribution. Classi-
cal sampling is not efficient for general probability distributions, in particular in high
dimensions, for multi-modal distributions, or for highly structured distributions [12].
One method for parametrizing high-dimensional probability distributions is given by
the Restricted Boltzmann Machine (RBM)[53]. Performing Gibb’s sampling [43], the
RBM can generate samples directly from its model distribution without calculation
overhead but this method suffers from the so-called slow mixing problem. It is a
local sampling method and relies on a Markov-chain process which can take a long
time to reach every mode of the distribution. The problem is amplified for distant
parts of distributions which are separated by gaps of low density. In some cases,
parts of the probability distribution can barely be sampled at all.

To demonstrate the slow-mixing of the local sampling technique, we train a RBM
[18] with nv = 4, nh = 3 and 105 training iterations on the Bars-and-Stripes (BAS)
training set (see Sec. 2.5.3) which is a training set with a very discrete distribution
and large gaps. Fig. 3.1.4 shows the samples that are generated by the trained
RBM. When drawing 100 from the model distribution using Gibb’s sampling, only
one mode of the distribution is explored. Orders of magnitude of additional sam-
pling steps are required to cumulatively sample the model distribution.
In practice, one would not select every sample produced by Gibb’s sampling to be a
valid sample but instead empirically choose every 101th− 105th sample, depending
on the distribution. Additionally, one can perform restarts of the sampling proce-
dure in order to avoid skipping many samples. Drawback here is that the first initial
input to the Gibb’s sampling method needs to be close to a learned visible state to

22

102 samples

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
102 RBM samples
BAS patterns

104 samples

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

ty

104 RBM samples
BAS patterns

106 samples

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ili

ty

106 RBM samples
BAS patterns

Figure 3.1.4: Tomographies of samples generated by a RBM which was trained on the
BAS training set (Sec. 2.5.3). The model distribution is very discrete and not well sampled
by the Gibb’s sampling method which is the conventional technique for sampling RBMs.
With 100 sampling steps, only one mode of the distribution has been explored. Orders
of magnitude more sampling steps are required to cumulatively sample the entire model
distribution.

generate valid samples. That requires certain knowledge of the distribution.

A probability distribution encoded in a qubit wavefunction does not have this issue.
Every measurement of the qubit state causes a random global projection of the wave-
function onto one basis state with the true probability as encoded in the qubit state.

To further visualize this point, we encode the BAS patterns into instructions for
a 2D random walk and inspect the ’randomness’ of a walk that results from samples
generated by a generative model.
The BAS patterns directly encode the instructions for two random walkers like
|∆x1∆y1∆x2∆y2〉 where ∆xi,∆yi are the next steps in x and y direction for walker
i = 1, 2. A ’1’ signifies a step of +1 along the dimension and ’0’ a step of −1. By
the nature of the BAS patterns, all valid steps are diagonal in the x-y-plane. For
the four BAS patterns, the four possible steps are

|1100〉 = ↗1 ↙2

|0011〉 = ↙1 ↗2

|1010〉 = ↘1 ↘2

|0101〉 = ↖1 ↖2

(3.4)

Both walkers start at the origin in two dimensional space ~x1(0) = ~x2(0) =

(
0
0

)
. The

position of random walker i after t steps is determined by the sequence of consecutive

23

samples that are generated by the trained generative model

~xi(t) = ~xi(t−1) +

(
∆xi
∆yi

)
(3.5)

Interestingly, the mean of both BAS random walkers and their relative distance are
de-coupled in the BAS patterns. The samples |1010〉 & |1010〉 influence only the
mean (both walkers walk diagonally in the same direction), and |1100〉 & |0011〉
influence only the distance (both walkers walk apart diagonally). Non of the BAS
samples influences both values at once. Consequently, we can interpret the mean of
the walkers and the distance between them as independent 1D random walks.

We will now derive the expected drift of the mean m = |~x1+~x2
2
| to the origin and the

expectation of the relative distance d = |~x1 − ~x2|. For the calculation, we assume
each BAS pattern to be equally likely with a probability of 1

4
. The expected absolute

distance to the origin of a 1D random walker with 1
2

probability to walk either left
or right is well known in literature [44] and given by

d1D(t) =

√
2t

π
. (3.6)

For the 2D BAS random walk considered here, each distance is scaled with
√

2
because the BAS walkers move strictly diagonally. Since only half of the BAS
samples contribute to each 1D random walk, the expected step size per step is
halved. This rule change in the 1D random walk contributes with the square-root
and thus all expectations are scaled with 1√

2
. For now, the intermediate theoretical

results are back to Eq. (3.6) which in fact is the expected results for the mean of the
walkers. The distance between the walkers has another scaling factor of 2 because
the relevant BAS samples move the walkers apart and thus the distance between
them increases by 2 units.
The final results for a theoretical BAS random walk are

mBAS(t) = d1D(t) ·
√

2√
2

=

√
2t

π
(3.7)

dBAS(t) = d1D(t) · 2
√

2√
2

=

√
8t

π
(3.8)

for the drift of the mean of the two BAS random walkers and their relative dis-
tance respectively. Generating samples that are not part of the BAS patterns will
systematically change the behavior of the walkers with the same being true for a
non-random sequence of samples, even if they are BAS patterns. This offers an
extension to the qBAS score [9] which was proposed to evaluate the quality of a
trained generative model. Our method not only measures the fidelity of the learned

24

BAS Random Walk with RBM, Skip 100 samples

100 75 50 25 0 25 50 75 100
X coordinate

100

75

50

25

0

25

50

75

100

Y
co

or
di

na
te

0 20 40 60 80 100
Number of Steps / t

0

20

40

Av
er

ag
e

M
ea

n BAS walker

m(t) = 2t

0 20 40 60 80 100
0

50

100

Av
er

ag
e

D
is

ta
nc

e BAS walker

d(t) = 8t

BAS Random Walk with RBM, Skip 10.000 samples

100 75 50 25 0 25 50 75 100
X coordinate

100

75

50

25

0

25

50

75

100

Y
co

or
di

na
te

0 20 40 60 80 100
Number of Steps / t

0

5

10

15

Av
er

ag
e

M
ea

n BAS walker

m(t) = 2t

0 20 40 60 80 100
0

10

20

Av
er

ag
e

D
is

ta
nc

e BAS walker

d(t) = 8t

Figure 3.1.5: Visualization of 100 repetitions of the BAS random walk with 100 steps
each generated by a RBM which was trained on the BAS training set. Average mean and
distance of the two BAS random walkers are compared to expected values for a true BAS
random walk. Randomness of the BAS random walk increase with an increasing number
of skipped samples of the RBM before the next one is used for a step in the walk. Residual
deviation to the expected quantities are likely caused by imperfectly learned probabilities
for the four BAS samples.

distribution but also the randomness of the generated samples.

The models compared here are a RBM and the Direct Variational Generator. The
DVG is implemented on the qiskit Qasm simulator (see Sec. 2.3). The RBM and
Direct Variational Generator are trained until full convergence on the BAS training
set. The experiment is carried out over 100 repetitions with 100 steps each. Mea-
sured are the paths of all random walkers, their drift of the mean in each run and
their eucledian distance. Because of the results shown in Fig. 3.1.4, we choose to
skip 102 or 104 samples generated by the RBM before the next valid sample which
contributes the random walk. We expect the randomness of the walk to increase
when skipping more samples.
Fig. 3.1.5 shows a systematically wrong behavior for the RBM with 100 skipped

25

BAS Random Walk with the Qasm Simulator

100 75 50 25 0 25 50 75 100
X coordinate

100

75

50

25

0

25

50

75

100

Y
co

or
di

na
te

0 20 40 60 80 100
Number of Steps / t

0.0

2.5

5.0

7.5

10.0

Av
er

ag
e

M
ea

n BAS walker

m(t) = 2t

0 20 40 60 80 100
0

5

10

15

20

Av
er

ag
e

D
is

ta
nc

e BAS walker

d(t) = 8t

Figure 3.1.6: Visualization of 100 repetitions of the BAS random walk with 100 steps
each generated by a DVG which was trained on the BAS training set. Average mean and
distance of the two BAS random walkers are compared to expected values for a true BAS
random walk. The DVG is implemented on the qiskit Qasm simulator which provides
simulated sampling results of the qubits. The observed random walks are very good
compared to the expected results.

samples where the walkers move into the same direct for many steps. For 10.000
skipped samples, the model approaches a better approximation of a BAS random
walk. The quality of the RBM results depends on its network architecture. With 4
instead of 3 hidden units, the the same measurements become significantly worse as
the already distant modes in the distribution become more distant.
In contrast to the complications of classical the classical sampling technique, Fig.
3.1.6 shows 100 BAS random walks generated by DVG samples. The average mean
and distance of the two BAS random walkers agree exactly with the expected quan-
tities. Note, that these measurements are not performed on a physical quantum
devices but on the qiskit Qasm simulator.

Residual discrepancies of a generated BAS random walk relative to the expected
values, even when efficient sampling of the true encoded distribution s performed,
are due to the following reasons. A significant error can arise from imperfect learn-
ing of the four different BAS patterns where not all have an exact 25% likelihood.
Additionally, the probability of non-BAS patterns is > 0% which will systemati-
cally change the behavior of the random walk, e.g. couple mean and distance and
introduce movement that is not along the diagonal axes.

26

Figure 3.2.1: Schematic representation of the network architecture of a Quantum Boltz-
mann Machine (QBM). The QBM is a generative Quantum Machine Learning algorithm
which implements a Boltzmann distribution of quantum states on a spin-Hamiltonian.
The Hamiltonian can either be diagonal of non-diagonal. The distribution of the QBM is
parametrized by the Hamiltonian parameters J, hz and potentially hx.

3.2 The Quantum Boltzmann Machine

Another single-layer generative Quantum Machine Learning algorithm is the Quan-
tum Boltzmann Machine (QBM) [6]. It is a quantum extension of the Boltzmann
Machine [31] and a Hamiltonian-based generative Machine Learning model. A QBM
implements a Boltzmann distribution over its states with the goal to approximate
a target distribution PD over a set of measured quantum states {s}. The relevant
code for the simulations in this section are provided on github [51][52].

3.2.1 Model Description

The general concept of a Quantum Boltzmann Machine is to assign each qubit state
s in computational basis, the z-basis, an energy and thus a probability according to
the Boltzmann distribution. The Hamiltonian over which the thermal ensemble is
constructed is the spin-Hamiltonian introduced in Sec. 2.1

H =
∑
ij

σzi Jijσ
z
j +

∑
i

hziσ
z
i +

∑
i

hxi σ
x
i (3.9)

The model distribution of a QBM can be written as

Pρ(s) = 〈s|ρt|s〉 (3.10)

27

where the density matrix describes a Boltzmann distributed ensemble which reads

ρt =
t∑

λ=0

e−Eλ

Z
|λ〉〈λ|. (3.11)

|λ〉 and Eλ are the eigenvectors and eigenenergies of the Hamiltonian H and Z =∑t
λ=0 e

−Eλ is the partition function. In the exact theory, t= 2n - 1 includes all eigen-
states of the Hamiltonian but we allow for a truncation after t higher eigenstates.

In the form without the hx term, the Hamiltonian in Eq. (3.9) is diagonal in the
computational basis and without entanglement in the eigenstates. We will refer to
this as a classical Hamiltonian. In a classical Hamiltonian, each eigenstate contains
exactly one n-qubit binary basis state, e.g. 0011,1010 etc. for 4 qubits. By allow-
ing transverse local biases hx, which are orthogonal to the computational basis, the
Hamiltonian is no longer diagonal and we consider this as a quantum Hamiltonian.
In a quantum Hamiltonian, eigenstates can be highly entangled and in complex su-
perpositions of basis states.

One interesting feature of the QBM is the possibility of reconstruction. Assum-
ing a corrupted BAS pattern ’11xx’ where only the first two bits are correctly given,
by clipping the fist two hz fields to large values, e.g. 5 times the maximum of hz,
we strongly encourage the first two qubits to be 1 and the Jij interactions will de-
termine the state of the the remaining two. This way, we can reconstruct the most
likely pattern according to the learned correlations in the Hamiltonian. This is not
further pursued in this work.

3.2.2 Training

The training of a Quantum Boltzmann Machine consists of tuning the parameters
J, hz and potentially hx of the Hamiltonian in Eq. (3.9) such that the model distri-
bution Pρ best approximates a target data distribution PD. This is commonly done
by minimizing a cost-function which measures the distance between Pρ and PD. The
preferred cost-function for training the QBM is the negative log-likelyhood (NLL)

L = −
∑
s∈D

PD(s) ln Pρ(s) (3.12)

The target data distribution PD is represented by a training set which is assumed
to follow the same distribution.

For a QBM with diagonal Hamiltonian, the gradients of the NLL with respect to
the Hamiltonian parameters are well-established and can be calculated via

∂L
∂Jij

= 〈szi szj〉D − 〈szi szj〉ρ

∂L
∂hzi

= 〈szi 〉D − 〈szi 〉ρ
(3.13)

28

where 〈·〉D describes the expectation in the training data set and 〈·〉ρ in the qubit
system. The gradients on training iteration m are applied in a simple step of gradient
descent

J
(m+1)
ij = J

(m)
ij + η

∂L
∂J

(m)
ij

h
(m+1)
i = h

(m)
i + η

∂L
∂h

(m)
i

(3.14)

where η is an external parameter called learning rate.

In the case of a QBM with non-diagonal Hamiltonian, i.e. with transverse fields
hx, the gradients of the Boltzmann distribution with respect to the Hamiltonian pa-
rameters are exponentially expensive to calculate. This is because the Pauli matrices
and their derivatives not longer commute with the Hamiltonian which is required
to simplify the derivative with respect to the Hamiltonian parameters [6]. As a
response, in this work, all parameters of a QBM with non-diagonal Hamiltonian
are trained with a black-box optimization algorithm directly minimizing the cost-
function in Eq. (3.12) with no explicit gradients being calculated. There are many
robust and established algorithms but we choose the cma-es algorithm (see Sec. 2.4)
for its reliable performance on non-convex objective functions.

3.2.3 Comparing Gradient Training and Optimizer Training

To compare the training approaches for the QBM, three different models are trained
on the Bars-and-Stripes training set (see Sec. 2.5.3). One diagonal QBM is trained
with the gradients shown in Eq. (3.13), another diagonal is trained with the cma-es
optimizer minimizing the NLL, and a non-diagonal QBM is also trained with the op-
timizer. All models have n = 4 qubits and follow the full Boltzmann density matrix
in Eq. (3.11) with no truncation. The eigenstates of the respective Hamiltonians
are calculated using exact diagonalization (see Sec. 2.3). The training procedure is
repeated 100 times.

Fig. 3.2.2 shows a comparable training progress for all three models. The gradient-
trained diagonal model initially follows a clearer gradient but with a constant learn-
ing rate of η = 0.1 converges only asymptotically. The cma-es optimizer with initial
step size of 0.1 converges fast to the global minimum of the NLL after some ini-
tial iterations. It seems like the QBM with non-diagonal Hamiltonian is harder
to train for the optimizer, potentially because of four additional hx parameters in
the Hamiltonian which need to be optimized. It also surpasses the gradient-trained
model before 100 iterations.

These results show the merit in using gradients for training simple Quantum Machine
Learning models but also legitimize the use of the cma-es optimization algorithm
for training the models.

29

0 50 100 150
Training Iterations

0.5

0.6

0.7

0.8

0.9

1.0

O
ve

rl
ap

0 50 100 150
Training Iterations

1.5

2.0

2.5

3.0

C
os

t

Diagonal, gradients
Diagonal, optimizer
Non-Diagonal, optimizer

Figure 3.2.2: Evaluating the average training progress for three Quantum Boltzmann
Machines on the Bars-and-Stripes training set over 100 repetitions. Two QBMs follow a
diagonal Hamiltonian and are trained using gradient descent and the cma-es optimizer
respectively. The QBM with non-diagonal Hamiltonian cannot be trained efficiently with
gradients and is trained with the cma-es optimizer. Learning rate for the gradient descent
and the initial step size for the optimizer are 0.1. Gradients initially receive a strong train-
ing signal but the optimizer coverges quickly after some initial iterations. The QBM with
non-diagonal Hamiltonian is slightly harder to train because of additional Hamiltonian
parameters.

3.2.4 Error in Truncating the Boltzmann Density Matrix

Constructing the full Boltzmann density matrix in Eq. (3.11) on a near-term qubit
quantum computer is currently impractical. Each eigenstate needs to be calculated
iteratively using the orthogonalization technique described in Sec. 2.2. Thus, we
study the expressivity and training performance of a Quantum Boltzmann Machine
with a truncated Boltzmann density matrix. For the simulation, we use t = 0, 1, 2
and t = 15 in a n = 4 qubit system and compare a QBM with diagonal and
non-diagonal Hamiltonian. We consider the diagonal model to be classical and the
non-diagonal to be quantum. To fully benchmark their expressivity, the models are
trained on random training sets (see Sec. 2.5.1) consisting of 10 random binary
samples each. The training progress is averaged over 40 repetitions with a different
random training set for each repetition.
The eigenstates of the Hamiltonians are calculated by the exact diagonalization
framework discussed in Sec. 2.3.

Fig. 3.2.3 clearly shows that a QBM with classical Hamiltonian cannot be trained
appropriately with a small number of eigenstates contributing to the Boltzmann dis-
tribution in Eq. (3.11). This is because each eigenstate of a diagonal Hamiltonian
contains exactly one basis state with amplitude 1 and thus all 2n eigenstates are
required to learn n-qubit wavefunctions with 2n flexible amplitudes. More surpris-
ingly, the non-diagonal Hamiltonian performs well with any truncation t. Even just

30

Truncated QBM on Binomial Training Sets

0 25 50 75 100 125 150
Training Iterations

0.2

0.4

0.6

0.8

1.0

O
ve

rl
ap

Classical Hamiltonian

0 25 50 75 100 125 150
Training Iterations

0.2

0.4

0.6

0.8

1.0

O
ve

rl
ap

t = 0
t = 1
t = 2
t = 15

Quantum Hamiltonian

Figure 3.2.3: Measuring the truncation error-dependence of n = 4 QBMs with classical
and quantum Hamiltonian on random training sets. The construction of the Boltzmann
density matrix is truncated at t = 0, 1, 2, 15. As each eigenstate of a classical diagonal
Hamiltonian only consists of a single basis state, the classical model requires full access to
all 16 eigenstates in order to learn random distribution. Conversely, even a single quantum
groundstate can be trained to approximate random distributions.

the groundstate of a quantum Hamiltonian can be trained appropriately to approxi-
mate a random target distribution. This indicates that a strict Boltzmann Machine
framework might not be required with a quantum Hamiltonian and instead, one can
perform generative machine learning with just a quantum groundstate - we call this
case groundstate training. Additional eigenstates increase the training performance
per iteration but don’t seem to be strictly necessary. Already with t = 1 or t = 2
there is little difference compared to the training performance with t = 15.
The groundstate training framework has different implications for different quan-
tum hardware. For a qubit quantum computer, it makes the implementation of a
Hamiltonian-based model feasible as it is generally inefficient to find a substantial
number of eigenstates with high accuracy. Quantum hardware with finite tem-
perature such as quantum annealers, naturally implement approximate Boltzmann
distributions [42] and don’t benefit from the groundstate training. Appendix C stud-
ies an initially promising approach of the Thermofield Double state to implement
a thermal state in qubits. Unfortunately, it cannot be used for this application as
it creates a pure state and not a thermal ensemble. Training performance is thus
equivalent to that of a quantum groundstate.

Another significant result of these simulations is that both QBMs, with diagonal
or non-diagonal Hamiltonian, always achieve a final overlap with the training set
of practically 100%. This indicates that giving a Quantum Boltzmann Machine
flexible access to all of its Hamiltonian eigenstates provides the QBM model with
very high expressivity. In this experimental setup, the training sets consist of 10
out of 16 random samples. Not all 16 degrees of freedom are required to learn those
distributions. Appendix A shows a quantitative performance comparison between a

31

QBM with diagonal an non-diagonal Hamiltonian. Both models are always able to
learn any training set distribution. For practical application on quantum devices, it
is not clear whether this conclusion holds.

3.2.5 Challenges for Groundstate Training

Motivated by the results in Sec. 3.2.4, when implementing a Quantum Boltzmann
Machine on a gate-based quantum computer, we would like to truncate the density
matrix in Eq. (3.11) with a truncation parameter t that is as small as possible. Ad-
ditional eigenstates are expensive to find with the Variational Quantum Eigensolver
and, as we have seen, not strictly necessary for a QBM with non-diagonal quantum
Hamiltonian.

A crucial consideration when nesting the VQE eigenstate search into the train-

ing of a Quantum Boltzmann Machine is that the energy functional E = 〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 for

the VQE and the negative log-likelihood in Eq. (3.12) are qualitatively different
cost-functions with different objectives. The VQE is a classical-quantum hybrid
algorithm for gate-based quantum computers to compute an upper bound to the
lowest eigenvalue of a Hamiltonian. Note, that it is not explicitly designed to find
the groundstate of a Hamiltonian. The groundstate of a Hamiltonian is not always
the only state with lowest energy. In a diagonal Hamiltonian with degenerate eigen-
states which all have the lowest energy, the VQE finds any of those eigenstates with
equal probability, or, depending on if entangling gates are used, an arbitrary super-
position of the eigenstates. For example, assuming a diagonal Hamiltonian H where
|λ0〉 = |00〉 and |λ1〉 = |11〉 are degenerate eigenstates with the lowest energy such
that Ĥ|00〉 = E0|00〉 and Ĥ|11〉 = E0|11〉. The variational energy functional E is
minimal with 〈00|Ĥ|00〉 = 〈11|Ĥ|11〉 = E0. An entangled state |λ′〉 = a|00〉+ b|11〉
solves the variational energy functional E for any values a, b ∈ C where |a|2+|b|2 = 1:

〈λ′|Ĥ|λ′〉 = |a|2〈00|Ĥ|00〉+ |b|2〈11|Ĥ|11〉
= |a|2E0 + |b|2E0 = E0.

(3.15)

The solution space of the VQE algorithm is thus of dimension > 0 with many equally
plausible solutions. The VQE with entangling gates in the wavefunction ansatz will
not reliably find a solution with fixed amplitudes a and b but an arbitrary super-
position. Those superpositions are of course judged very differently by the negative
log-likelihood for training the QBM as it strongly depends on the exact values of a
and b for the correct distribution. Varying amplitudes will result in unstable and
unreliable training signal.

To demonstrate the argument, a t = 2 diagonal QBM is trained on the Bars-and-
Stripes (BAS) training set (see Sec. 2.5.3). The QBM is implemented with the
qiskit Qasm simulator (see Sec. 2.3) and each eigenstate is found using the VQE

32

t = 2 QBM with diagonal Hamiltonian

0 10 20 30 40
Training Iterations

0.2

0.4

0.6

0.8

1.0
O

ve
rl

ap

0 10 20 30 40
Training Iterations

2.5

5.0

7.5

10.0

12.5

15.0

C
os

t

d = 0
d = 1

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

Final Tomography, d = 0
QBM model
BAS patterns

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ili

ty

Final Tomography, d = 1
QBM model
BAS patterns

Figure 3.2.4: Training of a truncated t = 2 Quantum Boltzmann Machine with diagonal
Hamiltonian on the BAS training set (see Sec. 2.5.3). Eigenstates of the diagonal Hamil-
tonian are found using the VQE algorithm (see Sec. 2.2). Compared are the training
performance of the QBM when trained with the VQE at depth d = 0 and d = 1. The
d = 1 state preparation contains entangling gates and thus allows a superposition of all
four BAS patterns in three eigenstates. The amplitude of the superposition is not reliably
controllable with the VQE.

algorithm (see Sec. 2.2) with 600 search iterations for each eigenstate. The wave-
function ansatz for the VQE is tested with depth d = 0 and d = 1. The models are
trained with the gradients described in Eq. (3.13) that aim to minimize the nega-
tive log-likelihood (NLL). The gradients will tend towards making the four relevant
eigenstates for the BAS patters approximately degenerate where the VQE for the
t = 2 QBM finds the lowest three eigenstates. Each eigenstate of a diagonal Hamil-
tonian consists of exactly one basis state however the objective of the VQE is to find
states of lowest energy. The state preparation with d = 1 implements entangling
gates which allow superposition of degenerate eigenstates in the wavefunction like
the example shown in Eq. (3.15).

Fig. 3.2.4 shows the average training progress for 20 repetitions as well as final
tomographies of selected runs. Shaded areas indicate the standard deviation of the
20 repetitions. Indeed, the results show that the t = 2 diagonal QBM with d = 1
significantly outperforms the d = 0 model on the cost-function which is the negative

33

log-likelihood (NLL). As expected, the final tomographies provided show that the
d = 0 model finds exactly three eigenstates while d = 1 allows a superposition of
all four relevant eigenstates. The NLL is very responsive towards the correct dis-
tribution of BAS patterns which is why the contribution of all four BAS patterns
instead of just three has significant effect on the NLL. The overlap during training
is comparable between the models because of imperfect eigenstate search, especially
in the more complicated d = 1 model. The final tomography of the d = 1 model
has considerably higher overlap of over 95% compared to a definitive maximum of√

3
4
≈ 86% for d = 0.

A more involved argument holds for a t = 0 QBM with non-diagonal Hamilto-
nian. The groundstate of a non-diagonal Hamiltonian can be a general entangled
superposition of basis states. As shown in Fig. 3.2.3, using exact diagonalization
(see Sec. 2.3), a single groundstate of a non-diagonal Hamiltonian can be sufficiently
trained to learn good approximations random training sets. Given a QBM Hamilto-
nian H (see Eq. (3.9)) of the form H = Hdiag +

∑
i h

x
i σ

x
i , let |ψ0〉 be the groundstate

of H which contains the BAS patters with equal probability such that |〈s|ψ0〉|2 = 1
4

for any BAS pattern s ∈ {1100, 0011, 1010, 0101}. The energy functional E in that
groundstate |ψ0〉 reads

〈ψ0|Ĥ|ψ0〉 = 〈ψ0|(Ĥdiag +
3∑
i=0

hxi σ̂
x
i)|ψ0〉

= Ediag +
3∑
i=0

〈ψ0|hxi σ̂xi |ψ0〉
(3.16)

where Hdiag|ψ0〉 = Ediag|ψ0〉 because Hdiag is diagonal. The σ̂xi Pauli operator in-
duces a flip on qubit i. This means for example that σ̂x2 |1100〉 = |1110〉. Because all
BAS patterns are at least two flips distant to each other, e.g. σ̂x1 σ̂

x
2 |1100〉 = |1010〉,

the non-diagonal contribution to the energy functional E for the VQE algorithm
vanishes in |ψ0〉. At that point, the same argument as for the diagonal Hamiltonian
and Eq. (3.15) is valid where there is no reliable training signal of the model to
evaluate the training progress because different superpositions of the BAS patters
minimize the variational functional E . The argument is valid for any trial state that
contains a strong contribution of the samples that correspond to the BAS patterns.
During training of a non-diagonal t = 0 QBM groundstate, beginning effects of this
will already contribute and cause unreliable an training signal. Concluding, we ex-
pect a t = 0 QBM with a Hamiltonian like in Eq. (3.9) where the groundstate is
found using the VQE algorithm to have severe difficulties converging.
This effect arises specifically from the interplay of the BAS training set in this bi-
nary representation and the chosen Hamiltonian ansatz. Because data scientists
generally have to to work with the data that is provided, it becomes clear that the
QBM Hamiltonian is not a suitable Hamiltonian ansatz for this application. For a
Hamiltonian with a σ̂xσ̂x-term, this precise issue should not arise as the BAS patters

34

t = 0 QBM with non-diagonal σx- or σxσx-Hamiltonian

0 50 100 150 200
Training Iterations

0.2

0.4

0.6

0.8

1.0
O

ve
rl

ap

0 50 100 150 200
Training Iterations

0

2

4

6

8

10

12

C
os

t

x

x x

Figure 3.2.5: Training progress of truncated t = 0 Quantum Boltzmann Machines with
non-diagonal Hamiltonians on the BAS training set (see Sec. 2.5.3). Compared are the
QBM Hamiltonian with σx-term like in Eq. (3.9) and a Hamiltonian which instead contains
a σxσx term like in Eq. (3.17). The groundstates of the Hamiltonians are found using
the Variational Quantum Eigensolver algorithm (Sec. 2.2). The groundstate training is
degenerate for the σx Hamiltonian which causes the training to be unreliable and the
progress to stagnate. Conversely, the σxσx-term lifts the degeneracy and allows for good
training results.

are coupled through two spin flips.

To test our hypothesis, we train two t = 0 QBMs with different non-diagonal Hamil-
tonians. One Hamiltonian is the QBM Hamiltonian in Eq. (3.9) with σxi -term and
the other is the Hamiltonian

H =
∑
ij

σzi J
z
ijσ

z
j +

∑
i

hziσ
z
i +

∑
ij

σxi J
x
ijσ

x
j . (3.17)

The groundstates of the respective Hamiltonians are calculated with the VQE eigen-
solver and 1500 search iterations. The large number of search iterations per ground-
state are to ensure that the results are not artifacts of unfinished groundstate prepa-
ration. The VQE algorithm operates at a circuit depth of d = 2 which is considered
deep enough for significant differentiation between the chosen models. The cma-es
runs at λ = 8, µ = 3.
Indeed, Fig. 3.2.5 shows clearly that the σx Hamiltonian for a t = 0 QBM is not
appropriate when performing the algorithm on a gate-based quantum device and
with the VQE. Conversely, the σxσx Hamiltonian is able to more reliably find the
groundstate which contains the correct superposition of BAS patterns. Note, that
we only show the results of one training run. The shaded areas are given by the stan-
dard deviation of the of the λ function evaluations in the cma-es optimizer while
the line denotes their mean. Frequently, the σxσx model achieves approximately
100% overlap. Studying the new model more closely, we find that there exist other

35

conflicting solutions for this Hamiltonian but one of them is the exact BAS ground-
state. It is not clear whether this is by caused by too shallow state preparation with
d = 2 or more fundamental reasons.

This section shows that there is an important choice to be made when it comes
to implementing different Quantum Machine Learning algorithms on different quan-
tum hardware. For gate-based quantum computers, the more natural choice for
a generative Machine Learning algorithm likely is circuit-based like the DVG in
Sec. 3.1. For quantum hardware that more naturally implements groundstates or
thermal ensembles of quantum Hamiltonians, such as a quantum annealer or ana-
log quantum simulators (see Sec. 1.1.2), the algorithm of choice can certainly be
Hamiltonian-based. The problem shown here arises specifically for the BAS patters,
the QBM Hamiltonian with transverse field and the VQE algorithm. It can be partly
solved by implementing the Hamiltonian in Eq. (3.17) which couples the BAS pat-
terns. We show that algorithmic artifacts can arise from conflicting hardware and
implementation techniques.

36

4 Quantum-assisted Generative Algorithms

To move towards implementation of Quantum Machine Learning algorithms for
practical applications, it is required to scale the size of the models considerably. For
current and near-term quantum computing devices, this may not be possible using
just their quantum resources [1][21]. Instead, in this chapter we focus on imple-
menting a qubit layer in the deepest layer of a generative Neural Network. This
significantly reduces the number of qubits required to scale the model size while
keeping the benefits of implementing qubits for generative Machine Learning tasks.
The quantum-assisted generative Machine Learning algorithm discussed in this chap-
ter is the Quantum-assisted Generator (QaG). It implements a Quantum Boltzmann
Machine (QBM) in the deepest layer of a network, encoding the model’s probability
distribution and sampling from it. Additionally, this chapter provides first promising
evidence that quantum phenomena may enhance performance of quantum-assisted
generative neural networks. Finally, a hybrid training approach for quantum-assisted
neural networks is proposed which promises scalability of the network size towards
practical application on relevant data sets. It allows to train model which are not
fully efficiently trainable with gradient descent, through simultaneous training iter-
ations of a black-box optimization and gradient descent with backpropagation.

4.1 The Quantum-assisted Generator

The quantum-assisted Machine Learning algorithm studied in this section is the
Quantum-assisted Generator (QaG). It is a generative algorithm with the goal to
parametrize a target data distribution and by that extract essential features in the
data. The QaG implements a Quantum Boltzmann Machine (QBM) (see Sec. 3.2)
in the deepest layer of a neural network with subsequent classical layers (see Sec.
1.2.2 for Neural Networks). The QBM encodes the probability distribution of the
generative model which can be sampled efficiently be measuring the qubit states.
This provides a larger generative model with the sampling benefits of a qubit layer
observed in Sec. 3.1.3 and reduces the number of qubits required to put quantum-
assisted Machine Learning models to practical use. Practical code implementations
of this algorithm can be found on github [51][52].

4.1.1 Model Description

A visual representation of the network architecture of the Quantum-assisted Gener-
ator can be seen in Fig. 4.1.1. In the following, we will use a short notation for the
network architecture of a QaG, e.g. 2q-4c for a QaG with 2 qubits and 4 classical

37

Figure 4.1.1: Schematic network architecture of a Quantum-assisted Generator with 2
qubits and 4 classical nodes. The qubit layer implements a Quantum Boltzmann Machine
(QBM) which encodes the model’s probability distribution. Samples of the QBM are
upsampled by a subsequent classical network.

output nodes.
The model distribution PQaG for the QaG is

PQaG(v) =
∑
s

P (v|s)Pρ(s) (4.1)

where Pρ(s) is the probability distribution of the Quantum Boltzmann Machine and
P (v|s) is the conditional probability of an output v for a given quantum sample s.
P (v|s) is defined by the classical network parameters, namely the weights between
the layers and the biases of the classical visible nodes, and the activation function.
The activation function for the classical layer is the sigmoid function

sig(y) =
1

1 + e−y
(4.2)

which outputs values sig(y) ∈ (0, 1). Here, those outputs are interpreted as activa-
tion probabilities, i.e. the probability pi for each node to output 1.
Given a quantum sample s, the activation probability pi for each output node is

pi = sig(
∑
j

Wijsj + bi). (4.3)

The probability PQaG(v) for a binary activation v is then calculated by multiplying
the individual activation probabilities pi or (1− pi) accordingly. The probability for

38

an example activation v = 0000 thus equals

PQaG(v = 0000) =
3∏
i=0

(
1− pi

)
(4.4)

and for activation v = 0011

PQaG(v = 0011) = (1− p0) · (1− p1) · p2 · p3 (4.5)

Generally, it is unfeasible to calculate Pρ(s) and thus PQaG(v) analytically. Common
practice for evaluating the distribution of a generative model is to sample from it and
approximate the true distribution with the distribution of the generated samples.
Here, we draw samples from the QBM and from those calculate PQaG(v) analytically.

4.1.2 Training

The aim in training a Quantum-assisted Generator is to tune the Hamiltonian pa-
rameters {J, hz, hx} of the Quantum Boltzmann Machine in the qubit layer and
the classical network parameters W, b such that the model distribution PQaG best
approximates a target data distribution PD. This is achieved by minimizing a cost-
function which provides a measure of distance between the model distribution and a
training set which represents the target distribution. Like for the models described
in Chap. 3, the cost-function for the QaG is the negative log-likelyhood (NLL)

L = −
∑
D

PD(v) log max(PQaG(v), ε) (4.6)

The singularity of the logarithm at PQaG(v) = 0 is regularized with ε = 10−8.

Currently, a lot of work is being done to find good gradients of cost-functions with
regards to the parameters of a Quantum Boltzmann Machine with non-diagonal
Hamiltonian [6]. Those are required to train a QaG entirely with gradient descent
and backpropagation. Here, we circumvent this ongoing research by optimizing all
parameters with the cma-es optimizer (see Sec. 2.4). In Sec. 3.2.3 we have shown
that a QBM with 14 parameters can be trained appropiately by the optimizer. We
assume that the optimizer is also able to train the QaG on a considerably more
complex cost-landscape. For the number of parameters in this section, i.e. 15 in a
2q-4c QaG with diagonal Hamiltonian up to 33 in a 3q-6c QaG with non-diagonal
Hamiltonian, this is likely to be true as cma-es is a popular optimization algorithm
in industrial research application cases.

The QaG as discussed here cannot be trained on continuous-valued data. Appendix
B shows a potential implementation of a quantum-assisted generative model which
can be trained on continuous data but is not further studied in this work.

39

Truncated 2q-4c QaG on Random Training Sets

0 50 100 150 200 250 300
Training Iterations

0.6

0.7

0.8

0.9

1.0

O
ve

rl
ap

Classical Hamiltonian

0 50 100 150 200 250 300
Training Iterations

0.6

0.7

0.8

0.9

1.0

O
ve

rl
ap

t = 0
t = 1
t = 2
t = 3

Quantum Hamiltonian

Truncated 3q-6c QaG on Random Training Sets

0 50 100 150 200 250 300
Training Iterations

0.2

0.4

0.6

0.8

1.0

O
ve

rl
ap

Classical Hamiltonian

0 50 100 150 200 250 300
Training Iterations

0.2

0.4

0.6

0.8

1.0

O
ve

rl
ap

t = 0
t = 1
t = 2
t = 7

Quantum Hamiltonian

Figure 4.1.2: Training performance of truncated 2q-4c (top) and 3q-6c (bottom) QaGs for
different truncation parameters t. The diagonal Hamiltonian (left) is considered classical
while the non-diagonal Hamiltonian (right) is considered quantum. The models are trained
on random training sets. Plotted are the means and the 5%-95% percentiles as shaded
regions. The classical model generally requires all eigenstates for full performance while the
quantum model can already be trained to good approximation using just the groundstate
(t = 0). A quantitative difference in performance between the full classical QaG and
quantum QaG arises for the 3q-6c model.

4.1.3 Error in Truncating the Boltzmann Density Matrix

In this section, we study the truncation error of the Quantum-assisted Genera-
tor. This is done by training QaGs with different truncation parameters t for the
Boltzmann density matrix in Eq. (3.11) on different data and evaluate the loss in
performance. In Sec. 3.2.4 we show the equivalent error in the Quantum Boltzmann
Machine. For the QaG, we expect the error one makes by truncating the model to
be smaller than for the QBM because the qubit layer no longer encodes the proba-
bility distribution of the data itself but instead the correlations between the classical
output nodes.

For the simulation setup, we compare a QaG with diagonal Hamiltonian and a
QaG with non-diagonal Hamiltonian with truncation parameters t = 0, 1, 2, 2n-1.

40

The diagonal Hamiltonian is considered to be classical and the non-diagonal Hamil-
tonian to be quantum. Training is performed on two different types of training data
sets: random binary training sets and binomial training sets (see Sec. 2.5). These
training sets are chosen to analyze the truncation error for distributions which have
no underlying structure and distributions which can be parametrized by few param-
eters. This showcases the fact that individual quantum samples in the QaG encode
correlations between the classical output nodes and perhaps entire modes in the
model distribution.
Training is performed on 100 generated training sets for 300 training iterations each.
The diagonal and non-diagonal Hamiltonian model are always trained on the same
data during each repetition.

Fig. 4.1.2 shows the results of a QaG with 2 qubits and 4 classical output nodes
(2q-4c) and a 3q-6c QaG which were trained on the random training sets. Plot-
ted are the average overlap for each truncation parameter t as well as the 5%-95%
percentiles in the shaded regions. It is apparent that every additional eigenstate is
required in the diagonal QaG model for good approximation of the random training
data. Even though the qubit layer now encode the correlations between the classical
nodes, the random training sets cannot be easily parametrized by few eigenstates
in the diagonal model. In contrast to that, the QaG with non-diagonal quantum
Hamiltonian shows no significant difference between different truncation paramters
t.
Interestingly, in the case of the 3q-6c model, one can observe a quantitative per-
formance difference between the full classical and quantum QaG model with t = 7.
This is even the case when comparing just the quantum groundstate (t = 0) to the
full classical model.

Fig. 4.1.3 shows the same simulation setup on binomial training sets. The QaG
model with diagonal Hamiltonian and t = 0 achieves a low-quality approximation
of a binomial. The qubit layer produces only one sample which the classical net-
work of the QaG cannot shape into a binomial. The best approximation possible
is a flat distribution with a slight focus on a peak in the middle of the histogram.
In contrast to that, already t = 1 achieves close to 100% overlap and a very good
approximation of a binomial. This provides instructive evidence of how a highly
structured distribution like the binomial training set can be parametrized with less
degrees of freedom. The truncation parameter t in the diagonal model could thus
be seen as an external parameter for the quality of approximation of the generative
model. By varying t, one can observe a hierarchy of features that the model learns
to achieve the best possible training performance.

In analog to the random training set, the non-diagonal QaG performs equally well
with any truncation paramter t. The results indicate that a mixed quantum state
may strictly not be required to utilize the Quantum-assisted Generator algorithms
to its fullest potential. This is a significant result for implementing an equivalent

41

Truncated 2q-4c QaG on Binomial Training Sets

0 50 100 150 200 250 300
Training Iterations

0.6

0.7

0.8

0.9

1.0
O

ve
rl

ap
Classical Hamiltonian

0 50 100 150 200 250 300
Training Iterations

0.6

0.7

0.8

0.9

1.0

O
ve

rl
ap

t = 0
t = 1
t = 2
t = 3

Quantum Hamiltonian

Figure 4.1.3: Training performance truncated of 2q-4c QaGs for different truncation pa-
rameters t. The diagonal (left) Hamiltonian is considered classical while the non-diagonal
Hamiltonian (right) is considered quantum. The models are trained on binomial train-
ing sets (see Sec. 2.5.2) Plotted are the means of 200 generated training sets and the
5%-95% percentiles as shaded regions. t = 1 is already sufficient for the classical QaG
to parametrize the binomial data which means that only two distinct quantum samples
encode most of the essential correlations of between the classical nodes in the output layer.
The quantum model performs equally well with any truncation t.

Hamiltonian-based generative algorithm on quantum devices which strictly operate
on pure states such as gate-based quantum computers.

4.1.4 Benchmarking a Potential Quantum Advantage

Motivated by the findings in Sec. 4.1.3 where the Quantuma-assisted Generator
model with non-diagonal Hamiltian shows a qualitative performance difference, this
section provides quantitative benchmarking simulations between the diagonal and
non-diagonal Hamiltonian QaG. The diagonal model is taken as classical reference
while the non-diagonal model is considered quantum.

The benchmarking setup is to train a QaG with diagonal Hamiltonian and a QaG
with non-diagonal quantum Hamiltonian on random training sets (see Sec. 2.5) and
compare their relative training performance. The classical model is implemented
with the full Boltzmann density matrix in Eq. (3.11) while for the quantum model,
we benchmark the full Boltzmann distribution and also a single quantum ground-
state with truncation parameter t = 0. The QaG network architecture is 3q-6c with
n = 3 qubits and 6 classical output nodes. The random training sets are of different
sizes, i.e. with a different number of random training samples. Those range from 2
samples per training set up to 1024. As the 3q-6c QaG has 26 = 64 possible output
activations, a training set with 1024 samples is relatively flat while training sets in
the intermediate range may contain many samples repeatedly and other samples not
at all.

42

2 4 8 16 32 64 128 256 512 1024
Size of Training Set

0.4

0.2

0.0

0.2

0.4

0.6

O
ve

rl
ap

 D
iff

er
en

ce

q. Boltzmann Distr. vs cl. Boltzmann Distr.

2 4 8 16 32 64 128 256 512 1024
Size of Training Set

0.4

0.2

0.0

0.2

0.4

0.6

O
ve

rl
ap

 D
iff

er
en

ce

q. Groundstate vs cl. Boltzmann Distr.

Figure 4.1.4: Benchmarking results of a 3q-6c Quantum-assisted Generator. A QaG with
non-diagonal quantum Hamiltonian and a QaG with diagonal classical Hamiltonian are
trained on random training sets of increasing size, i.e. increasing number of samples per
training set. Both models are trained for 5.000 iterations and their final overlap with the
respective training set is calculated into an overlap difference. A positive overlap difference
(blue shaded area) indicates a better training performance of the quantum model. The
simulations are repeated on 200 random training set per training set size and the 25%-
75% percentiles are shown as boxes. The quantum QaG model generally outperforms the
classical model. This is especially true for intermediate training set sizes. Surprisingly,
the quantum advantage is similarly maintained when training just a quantum grountstate
and comparing to the full Boltzmann distributed classical model.

The classical and quantum model are trained for 5.000 training iterations on a
given training set to guarantee a final result. The resulting final overlap of the model
distribution with the training set is calculated into an overlap difference between
the classical and the quantum model. A positive overlap difference implies that the
quantum model has a larger overlap and thus achieved a better approximation of
the target distribution. This procedure is performed for growing training sets and
200 repetitions per training set size.

Fig. 4.1.4 shows the overlap differences in each run marked as grey points as well as
the 25%-75% percentiles of the 200 repetitions inside the boxes. The blue-shaded
areas indicates a positive overlap difference and thus a better training result of the
quantum model.

43

Indeed, we observe a quantitative quantum advantage of the QaG with non-diagonal
quantum Hamiltonian as compared to a QaG with diagonal Hamiltonian. This is es-
pecially true for training set sizes in the intermediate range of 4−64 which one might
consider to be the most random as there are many samples but the distribution is
still far from evenly distributed. Interestingly, a very similar quantum advantage is
maintained when comparing just a trained quantum groundstate to the full classical
QaG distribution. For training set size in the range of 8-16, which are equivalent
measurements to those in Fig. 4.1.2, we are able to replicate an overlap difference
of roughly 10%.

To conclude, we have measured a quantum advantage in training a Quantum-assisted
Generator with non-diagonal Hamiltonian. Given that the model contains 3 addi-
tional parameters in the qubit layer, one may expect that some of the quantum
advantage due to that. Very interestingly, even the quantum groundstate outper-
forms the QaG with diagonal Hamiltonian by a very similar amount. This indicates
that indeed quantum phenomena are the leading cause of these performance en-
hancing effects. It seems like local minima in the training of the quantum-assisted
model are more effectively being avoided by the model which contains superposition
and entanglement in its eigenstates.
It has to be noted, that the QaGs in this section are trained using the cma-es
optimizer to minimize the negative log-likelihood. We have not performed this
benchmarking setup with other optimizers. Given that the results are consistent
between the thermal ensemble implementation of the QBM and a single quantum
groundstate, which are very different models as one is a mixed state and one is a
pure state, we expect a certain quantum advantage to be maintained.

44

Figure 4.2.1: Schematic representation of the hybrid training of a Quantum-assisted
Generator. Here, only the visible biases of the QaG are trained by conventional gradient
descent while the rest of the model parameters are trained by the cma-es optimization
algorithm.

4.2 Hybrid Training of Quantum-assisted Neural
Networks

Convential Artificial Neural Networks (ANNs) are known to be highly scalable in
the number of layers and nodes. To be enhance modern ANNs through quantum
layers, one needs to be able to add layers to their quantum-assisted architectures
and be able train them. In this section, we present a hybrid training approach for
Quantum-assisted Neural Networks which satisfies these requirements. The relevant
code for the hybrid training can be viewed on github [51][52].

4.2.1 Description of the Hybrid Training Method

The term ’hybrid training’ used in this work refers to the training of Quantum-
assisted Neural Networks with an interplay of the cma-es optimization algorithm
(Sec. 2.4) and gradient descent. Generally, cma-es is used for all parameters of a
model which cannot be efficiently trained with gradients. Sometimes one may prefer
to train some additional parameters with the optimizer in order to provide it with
more flexibility. Classical gradients are used everywhere else.

45

The functionality of the hybrid training is as follows:
cma-es is based on mutating the current best parameters, recombining them and
taking the best performing ones as parents for the next generation of mutated pa-
rameters. It proposes a population of λ different sets of mutated parameters in its
evolutionary strategy. These define λ different networks with a specific cost asso-
ciated with their outputs. Those networks only differ in the parameters that are
tuned by the optimizer but are otherwise identical. For each of the networks, we
calculate hypothetical gradients for the parameters which are not tuned by the opti-
mizer but they are not yet applied to the respective parameters. The best µ out of λ
parameter sets are carried over to the next generation of the cma-es algorithm and
of these µ best-performing networks, the calculated classical gradients are averaged
and applied to the corresponding network parameters.

With the hybrid training proposed in this section, the optimization algorithm and
gradient descent are applied simultaneously on different parts of the network. It is
also possible to perform the training in repeated cycles where first a cma-es iteration
is performed followed by one iteration of gradient descent. This cycle-method has
not been found to work in practice. A likely explanation is that parameter training
is a very high-dimensional and complex problem where all parameters need to be
tuned at once to correctly navigate the space. Some minima might only be accessible
this way.

4.2.2 Improved Convergence Results

In this section, we apply the hybrid training described in Sec. 4.2.1 to the Quantum-
assisted Generator network in Sec. 4.1. For a QaG with 3 qubits and 100 classical
visible nodes (3q-100c), there are 409 model parameters to be trained. In a hy-
brid training approach for this QaG, the 100 visible biases are trained with classical
gradients while the remaining 309 weights and Hamiltonian parameters are trained
by the optimizer. A schematic representation of the network architecture and the
hybrid training can be seen in Fig. 4.2.1.

The training sets in this section for testing the hybrid training consist of binary
10x10 samples of the MNIST training data set (see Sec. 2.5.4). This data set is one
of the standard data sets for benchmarking Artificial Neural Networks and Machine
Learning algorithms in general. Here, the training sets are constructed of just two
MNIST samples which are selected at random in 100 different training repetitions.
We compare the convergence rate of the hybrid-trained QaG with a purely cma-es
optimized QaG.

Fig. 4.2.2 shows the training progress of the two models on the 100 different train-
ing sets and 1.000 training iterations. The simulations give a mean final overlap of
45% for the hybrid-trained model and 13% for the cma-es optimized model. Fig.

46

0 200 400 600 800 1000
Training Iterations

0.0

0.2

0.4

0.6

0.8

1.0
O

ve
rl

ap
hybrid runs
hybrid mean
optimizer runs
optimzer mean

Convergence of QaG with Hybrid- and cma-es Training

Converged Not Converged

Figure 4.2.2: Training performance comparison between a 3q-100c hybrid-trained
Quantum-assisted Generator (orange) and a 3q-100c QaG which is purely trained by
the cma-es optimization algorithm (purple). Training is performed 100 times on two
newly selected 10x10 MNIST training data samples for 1.000 training iterations each.
The hybrid-trained model shows a mean final overlap of 45% with the respective training
set while the cma-es optimized model achieves only 13%. Shown are typical samples of a
converged model with near 100% and a model which did not converge and has close an
overlap of < 10% with the correct training samples.

4.2.2 also provides typical samples of a QaG that did not converge successfully. The
algorithm typically learns an average representation of the training set if it cannot
learn the distinct samples. Those average solutions have an overlap of barely over
0% with the correct data unless the two MNIST data samples contain the same digit
in a similar style. The final overlap of the QaGs thus mostly corresponds to whether
the QaG was able to learn two distinct MNIST samples or only their average.

This experiment provides indication that black-box optimization of entire deep net-
works in unlikely to be effective. Conversely, hybrid training has the potential to
provide Quantum-assisted Neural Networks with one of the most important factors
in today’s context of data science, namely scalability.

47

5 Input-Dependent Quantum-Assisted
Artificial Neural Networks

This chapter introduces three input-dependent Quantum-assisted Artificial Neural
Networks, in particular two Hamiltonian-based Autoencoders and one Gate-based
Autoencoder. Typical goals of Autoencoders are dimensionality reduction Autoen-
coder is dimensionality reduction. The general network architecture consists of an
encoder network, a bottleneck layer that displays the lowest-dimensional represen-
tation of the data in so-called latent space, and a decoder network. The encoder
network performs a forward pass of the data where consecutive layer generally have
a lower number of nodes. This is called downsampling. The decoder network scales
the activation back up to the size of the original input. This is called upsampling.
Autoencoders are trained to minimize the reconstruction error between the output
and the input. If the high-quality reconstruction is successful, then the model must
have learned an efficient encoding of the data as it was passed through a much
smaller-dimensional layer. Typical bottleneck layer sizes in conventional Autoen-
coder range from two or three up to a few dozen.
An Autoencoder can be trained with different applications in mind like image com-
pression and denoising [25], data generation [13], feature extraction [63], and more.
For this work, we focus on the ability to strictly achieve good reconstruction of
the training data. In our networks, a qubit layer encodes the lowest-dimensional
representation of the data and is thus located in the middle bottleneck layer.

5.1 The Hamiltonian-based Autoencoder

The Hamiltonian-based Autoencoder (HAE) proposed and studied in this work is a
Quantum Machine Learning algorithm and, more specifically, a Quantum-assisted
Neural Network. As an Autoencoder, the most fundamental property of the algo-
rithm is to calculate a low-dimensional representation of input data in the middle
bottleneck layer of the network. This bottleneck layer consists of a Quantum Boltz-
mann Machine (see Sec. 3.2 for the QBM) which is implemented on qubits. The
purpose of the QBM is to provide a distribution of quantum samples for a specific
input and thus a distribution of model outputs. This probabilistic modeling in the
so-called latent space of the HAE may aid the training of the Autoencoder or en-
hance the application of a trained model. The relevant code for the HAE in this
work can be found on github [51][52].

48

Figure 5.1.1: Network architecture of the Hamiltonian-based Autoencoder (HAE). The
goal of this model is to learn a lower dimensional representation of data. The HAE is
a Quantum-assisted Autoencoder which contains qubits in the bottleneck layer of the
network. The qubits implement an input-dependent Quantum Boltzmann Machine which
produces samples according to the input of the network.

5.1.1 Model Description

The model architecture of the Hamiltonian-based Autoencoder can be seen in Fig.
5.1.1. It consists of an encoder network, a middle layer that is commonly called
bottleneck layer or latent space, and a decoder network. The input layer takes an
input x and the network produces outputs v = f(x) where f is the transformation
of the Autoencoder on the input. The HAE is trained to reconstruct inputs such
that f(x) = v ≈ x. Given that x is propagated through a smaller bottleneck layer,
if high-quality reconstruction is successful, the model must have learned an efficient
representation of the data in the bottleneck layer which contains the most essential
structural information.

In this work, the technique for making the Quantum Boltzmann Machine in the
qubit layer input-dependent is to add a local field offset h̃z to the QBM Hamil-
tonian (Eq. (3.9)). The offset depends on the input x and the paramters of the
encoder, so the weights W connecting the input layer and the qubit layer:

h̃zi =
∑
j

Wijxj. (5.1)

49

The input-dependent QBM Hamiltonian H̃ is then calculated via

H̃ = H +
∑
i

h̃ziσ
z
i

=
∑
ij

σzi Jijσ
z
j +

∑
i

(hzi + h̃zi)σ
z
i +

∑
i

hxi σ
x
i

(5.2)

where H is a foundation Hamiltonian that is not directly implemented in this algo-
rithm. The parameters {J, hz, hx} of the foundation Hamiltonian H and the weights
W of the encoder that lead to the qubit layer determine an input-dependent QBM.
These are the parameters which are trained to adjust the Autoencoder. The QBM
can be sampled as explained in Sec. 3.2 to produce quantum samples s. The decoder
network upsamples the quantum samples s with the subsequent weights WT into
visible activations

v = sig
(
WT s + b

)
. (5.3)

The activation function for the output layer is the sigmoid activation function (Eq.
(4.2)). Note, that the weights WT of decoder network are the transposed weights
of the encoder. This shared-weight Autoencoder architecture is a choice we make
and is also used in literature [32]. The visible activations vi in the HAE are not to
be understood as activation probabilities pi like in the case of the Quantum-assisted
Generator in Sec. 4.1. Rather, they are gray-scale values and the direct output of
the model in response to either binary- or continuous-valued input.

The function of the decoder of the Hamiltonian-based Autoencoder is an analog
to the Quantum-assisted Generator in Sec. 4.1. In fact, the different hz define a
family of QaGs which are called depending on the input to the network. Hence,
training of the model implicitly consists of training a family of QaGs and a correct
mapping of input to one or several of those QaGs.

The Hamiltonian-based Autoencoder is noticeably limited by the number of pos-
sible quantum samples s. For a model with n qubits, there are 2n possible states
that could be measured. Consequently, the HAE cannot create more than 2n differ-
ent output activations because upsampling of the quantum samples is deterministic.
Making use of the limited resources that the binary quantum samples offer compared
to floating-point values implemented in conventional Autoencoders, an interesting
application of this model is to finding a good pairing of different inputs where struc-
turally similar inputs are grouped into the same quantum sample and thus the same
output. This has very close resemblance to clustering algorithms and vector quanti-
zation which is a technique used audio and image compression [41][45]. In practice,
not all 2n quantum states will actively take part in the model as it requires a large
number of network weights to separate different inputs into distinctly different h̃z

offsets.

50

An additional potential application of the Hamiltonian-based Autoencoder is in
generating samples from a trained latent space. Autoencoders that can be used to
sample from latent space are called Variational Autoencoders [50]. In Chapters 3 &
4, we have studied the benefits of implementing qubits as in generative Quantum
Machine Learning models and in qubit layers of generative Quantum-assisted Neu-
ral Networks. It is likely possible to implement a HAE such that one can efficiently
sample the latent space of the model and from that generate valid samples that
follow the training set distribution. This application is not further studied in this
work but is a good candidate for further research.

5.1.2 Training

The training of the Hamiltonian-based Autoencoder in this section is performed
with the cma-es optimization algorithm (see 2.4). The cost-function that is used
as objective function for the optimization algorithm is the mean square error (MS
error)

C =
∑
D

1

2

∑
i

(xi − vi)2

N
=
∑
D

1

2

∑
i

(xi − f(x)i)
2

N
(5.4)

where xi and vi are the values of pixel i of the input x and the output v = f(x) of
the HAE respectively. The MS error measures the average squared difference of the
N output nodes vi to the corresponding input node xi. Hence, we will also refer to
it as the reconstruction error. This pixel-wise squared difference is summed over the
training set D. By using the MS error as cost-function for the cma-es algorithm,
the network- and Hamiltonian parameters are tuned to optimize the reconstruction
quality of the HAE.

A relevant consideration in training the HAE is the dimensionality of the qubit
layer’s Hilbertspace. For n qubits, it is 2n which means that only 2n different quan-
tum samples s can be produced by the entire model, irrespective of the size of
training set or number N of visible nodes. One of the challenges in training the
HAE is therefore that it must learn to manage its resources and pair similar inputs
together to the same output. The Hamiltonian local field offsets h̃zi must thereby be
learned such that the resulting offset Quantum Boltzmann Machines produce similar
samples for inputs of similar shapes, ideally with a slightly different distribution of
those samples.

A common challenge for Autoencoders is to converge to a solution of network pa-
rameters which does not create averaged outputs for different input samples. In
this model, the goal in training is to converge to good values of W,b such that the
Hamiltonian offsets h̃z are distinctly different for significantly different inputs, but
also that the limited number of quantum states are used to effectively pair similar
inputs together.

51

During training, the HAE has to be evaluated for every training sample in every
training iteration. This comprises of finding the eigenstates of the input-dependent
QBM and constructing the truncated density matrix in Eq. 3.9 for every training
sample. This is a challenge for practical application on industrial-sized training sets.
The expected pay offs for implementing such a quantum-assisted Machine Learning
algorithm need to warrant the computational cost, i.e. efficient grouping of inputs,
enhanced training performance, probabilistic modeling or direct sampling of the
latent space.

5.1.3 Bencharking a Quantum Advantage

Sec. 4.1.4 shows a quantum advantage in training for a Quantum-assisted Generator
when implementing a Quantum Boltzmann Machine with non-diagonal Hamiltonian
in the generating layer of the network. In this section, we test for a quantum advan-
tage in the Hamiltonian-based Autoencoder. As in the case with the QaG, we define
a quantum advantage as improved training performance of the HAE when imple-
menting a QBM with non-diagonal Hamiltonian in the qubit layer as compared to
a QBM with diagonal Hamiltonian. The model with diagonal Hamiltonian acts as
classical reference whereas the model with non-diagonal Hamiltonian is considered
quantum.
In analogy to Sec. 4.1.4, the diagonal and non-diagonal Autoencoder models are
trained on random training sets (see Sec. 2.5 for random training sets). The num-
ber of iterations in training is chosen to be high enough for the training to have
plateaued for a long time or until convergence with very small MS error. In some
cases, the models may have been able to converge further after a long plateau but
this is not considered for these measurements. The final mean square-error over the
training set for the classical and quantum model is calculated into a fitness differ-
ence which is the negative difference of the MS error. A positive fitness difference
indicates an advantage of the non-diagonal quantum model and a smaller average
MS error.
Training is performed on different random training sets with either binary values
∈ {0, 1} or continuous values ∈ (0, 1). By varying the number of samples in the
training set, we study the model’s ability to learn distinct reconstructions of ran-
dom samples and to find the best mapping of different inputs to the same output
if it cannot achieve distinct reconstruction. For the benchmarking simulations, we
study a HAE with 6 classical input- and output nodes and 2 qubits (6c-2q) and
one with 6 classical nodes and 4 qubits (6c-4q). Note, that 2 qubits have 22 = 4
possible states and therefore partly less than the number of different inputs dur-
ing training which range from two to eight samples per training set. It is therefore
expected for the 6c-2q model to have a larger MS error than the model with 4 qubits.

All network parameters are trained with the cma-es algorithm according to Sec.
5.1.2. The measurements of the 6c-2q model are repeated on 100 different training

52

6c-2q HAE Random Training Sets
Binary

2 3 4 6 8
Size of Training Set

0.10

0.05

0.00

0.05

0.10

Fi
tn

es
s

D
iff

er
en

ce

2 3 4 6 8
Size of Training Set

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Sq
ua

re
d

E
rr

or

quantum
classical

Continuous

2 3 4 6 8
Size of Training Set

0.10

0.05

0.00

0.05

0.10

Fi
tn

es
s

D
iff

er
en

ce

2 3 4 6 8
Size of Training Set

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Sq
ua

re
d

E
rr

or

quantum
classical

6c-4q HAE on Random Training Sets
Binary

2 3 4 6 8
Size of Training Set

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Fi
tn

es
s

D
iff

er
en

ce

2 3 4 6 8
Size of Training Set

0.00

0.02

0.04

0.06

0.08

0.10

Sq
ua

re
d

E
rr

or

quantum
classical

Continuous

2 3 4 6 8
Size of Training Set

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Fi
tn

es
s

D
iff

er
en

ce

2 3 4 6 8
Size of Training Set

0.00

0.02

0.04

0.06

0.08

0.10

Sq
ua

re
d

E
rr

or

quantum
classical

Figure 5.1.2: Benchmarking results for a potential quantum advantage in the
Hamiltonian-based Autoencoder (HAE). A quantum advantage is defined as a smaller
mean square error when comparing a HAE with non-diagonal Hamiltonian (blue) to a
HAE with diagonal Hamiltonian (grey). The diagonal model is taken as classical reference
while the non-diagonal is considered quantum. HAE models with 2 and 4 qubits in the
bottleneck layer are trained on random binary and continuous training sets of different
sizes, i.e. increasing number of training samples. Their error after training is calculated
into a fitness difference. A positive fitness difference (blue shaded area) indicates a quan-
tum advantage. 100 and 40 individual runs are marked as dots in the top and bottom
plot respectively while the 25%-75% percentiles are shown as boxes. On binary data, the
results are indecisive but on continuous data, there is indication for the quantum model
to perform worse.

sets contrary to 40 different training sets for the 6c-4q model. This is due to limi-
tations in simulation time.

Fig. 5.1.2 shows the results of the benchmarking simulations with individual runs
marked as points and the boxes indicating the 25%-75% percentiles. The blue shaded
area in the relative fitness difference plot indicates a quantum advantage but there
is no clear systematics that indicate a such a quantum advantage. The absolute
error of classical and quantum models over the training repetitions are also shown.
As expected, both the diagonal and the non-diagonal HAE models perform better
with more qubits. The average MS error of the 6c-4q model is smaller than that of
the 6c-2q model, especially on binary training sets where reconstruction usually suc-
ceeds either perfectly or only as an average. This observation may partly be caused
by the fact that the 6c-4q model has an additional 12 weights that can be used to

53

better encode the input data. Continuous data is generally harder to reconstruct
exactly but there are also smoother average solutions which reduce the expected MS
error for a larger number of training samples.

Contrary to the measured quantum advantage in Sec. 4.1.4, where the quantum
effects in the non-diagonal Hamiltonian system of a Quantum-assisted Generator
seem to enhance training performance, Fig. 5.1.2 shows no quantum advantage for
the Hamiltonian-based Autoencoder. Instead, there is a slight trend that the HAE
with diagonal Hamiltonian is outperforming the model with non-diagonal Hamil-
tonian on continuous data, especially for the 6c-4q model. For binary data, the
results are indecisive. The simulations for the 6c-2q have more statistics over 100
repetitions and show no significant difference. For the task of strictly fitting the
model parameters to a given training set without any focus on generalization or
other performance metrics, the HAE with diagonal Hamiltonian seems more reli-
able than the non-diagonal model. How other characteristics than strict training
for reconstruction of training data depend on quantum effects such as superposition
and entanglement is not clear from these simulations and need to be tested further.

54

Figure 5.2.1: Network architecture of the Hybrid-trained Quantum-assisted Autoencoder
(HTHAE). The goal of this model is to learn a lower dimensional representation of data.
The HTHAE is a Quantum-assisted Autoencoder which contains qubits in the bottleneck
layer of the network. The qubits implement an input-dependent Quantum Boltzmann
Machine which produces samples according to the input of the network. This model
employs a hybrid training method which consists of an interplay of black-box optimization,
gradient descent and backpropagation. Thus, the HTHAE is scalable with additional
classical network layers.

5.2 The Hybrid-trained Hamiltonian-based
Autoencoder

The Hybrid-trained Hamiltonian-based Autoencoder (HTHAE) is a quantum-assisted
Machine Learning algorithm and an extension of the Hamiltonian-based Autoen-
coder (HAE) archictecture discussed in Sec. 5.1 by including additional classical
network layers which are trained using a hybrid training method. As an Autoen-
coder, the HTHAE is trained to reconstruct inputs and learn low-dimensional struc-
ture in the data. The difference to the HAE is the training and thus scalability of
the model. Our implementation of the HTHAE can be viewed on github [51][52].

5.2.1 Model Description

The network architecture of the Hybrid-trained Hamiltonian-based Autoencoder
can be seen in Fig. 5.2.1. It consists of an encoder network, a Quantum Boltzmann
Machine in the bottleneck layer, and a decoder network. Inputs to the network
are passed through the classical encoder network which consists of several layer,
generally becoming smaller in size. The layers of the encoder network follow the
notation (0) for the input layer, (1) for the first layer, and (`) for layer `. The
corresponding biases are b(`) while the weights connecting layer (`) and (`+ 1) are

55

called W(`).
The encoder propagates the activation up to the qubit layer in layer (k). This qubit
layer implements a Quantum Boltzmann Machine (QBM) (see Sec. 3.2). The QBM
Hamiltonian is input-dependent with an added local field

h̃zi =
∑
j

W
(k−1)
ij u

(k−1)
j (5.5)

such that the QBM Hamiltonian reads

H̃ = H +
∑
i

h̃ziσ
z
i

=
∑
ij

σzi Jijσ
z
j +

∑
i

(hzi + h̃zi)σ
z
i +

∑
i

hxi σ
x
i

(5.6)

where H is a foundation Hamiltonian of the QBM to which input-dependent local
fields are added.
The decoder network upsamples the quantum samples s of the input-dependent
QBM up to the visible output activation v which has the same size as the original
input.

In this work, network architectures may vary in the number of layers and nodes.
For a hypothetical HTHAE consisting five layers with 100, 20, 4, 20, 100 nodes in
the respective layers and the middle qubit layer implementing a QBM on 4 qubits,
we will follow the notation 100c-20c-4q.

Because the model aims to reconstruct the input samples which may have con-
tinuous grey-scale values ∈ [0, 1], we choose the sigmoid activation function (Eq.
4.2) for the final output layer

v = sig
(
W(−1)u(−1) + b(0)

)
(5.7)

The activation function for all other intermediate layers is the leaky Rectified Linear
Unit (leaky ReLU) ζ : R→ R. The leaky ReLU is defined as

ζ(y) =

{
y, if y ≥ 0

0.1 y, if y < 0
(5.8)

and is a popular modification of the commonly used ReLU activation function. It
is ’leaky’ because, unlike the regular ReLU, it leaks small contributions of negative
values of y instead of setting them equal to zero.

One significant feature of the HTHAE model is that decoder shared parameters
with the encoder network. This means that the layers which are the same distance
to the bottleneck layer have the same shape and parameters i.e. W(`)T = W(−`)

56

where in reference to their corresponding layers in the encoder, the layers of the
decoder are called (−`). The network is essentially ’mirrored’ around the middle
which is a necessary condition for the hybrid training of the model. Details can be
seen in Sec. 5.2.2.

As mentioned in Sec. 4.1, the HAE and HTHAE define a mapping to a family
of Quantum-assisted Generator networks (Sec. 4.1) which are called depending on
the input to the network. Hence, training of the HTHAE implicitly consists of hybrid
training a family of QaGs and a correct mapping of input to one or a distribution
of QaGs.

5.2.2 Training

The Hybrid-trained Hamiltonian-based Autoencoder is trained by tuning all param-
eters {W(`),b(`),hz,hx,J} of the encoder, the decoder and the Quantum Boltzmann
Machine in the bottleneck layer with the aim to minimize the mean square error
(MS error). The MS error

C =
∑
D

1

2

∑
i

(xi − vi)2

N
(5.9)

provides a reconstruction error between the input x and the output v. The cost-
function for the HTHAE is thus the same as for the HAE in Sec. 5.1. The difference
between the models is how the cost-function is minimized. The parameters of the
QBM as well as the parameters of the adjacent layers are trained with the cma-es
optimization algorithm (Sec. 2.4). Additional layers in the classical network with
the respective parameters are trained by gradient descent. This is motivated by
Sec. 4.2 where we show the benefits of reducing the amount of parameters tuned by
the optimizer and implementing a hybrid training method. The results imply that
hybrid training with classical gradients wherever possible might not only be helpful
for training success but is very likely required for larger quantum-assisted networks.

A schematic representation of the hybrid training approach can be seen in Fig.
5.2.2. The gradient of the cost function with respect to deeper network parameters
can be calculated via backpropagation (see Sec. 1.2.2). This is done from layer (−0)
to layer (−k + 1). As with a QBM with non-diagonal Hamiltonian, calculation of
the cost function gradient with respect to the Hamiltonian parameters is in general
unfeasible [6]. The error can thus not be propagated through the quantum layer to
the previous classical layers. This is the exact reason why the network parameters
are shared between the encoder and the decoder network as a first approximation.
It is essentially required to effectively train the HTHAE with the hybrid training
method. The weights of the encoder are consequently indirectly trained by the
gradients that were calculated in the decoder up to the qubit layer. The gradient
contribution of the encoder to the shared weights is systematically. In purely clas-
sical network simulations, which were implemented with an analogue architecture

57

Figure 5.2.2: Schematic representation of the hybrid training of the HTHAE. The inner
layers of the network, including the qubit layer that implements a Quantum Boltzmann
Machine, are trained with the cma-es optimizer while the remaining parameters of the
decoder are trained with classical gradient descent and backpropagation. The gradient
of the decoder cannot be propagated back through the qubit layer such that the encoder
which shared weights with the decoder only receives an implicit gradient update.

similar to the quantum case, it was observed that while the gradients of the encoder
help convergence, they might not be strictly needed.

Even though the weights W(k) that lead out of the qubit layer and the biases b(k−1)

that belong to the next adjacent layer could be trained with gradients, those addi-
tional parameters offer vital flexibility for the cma-es optimizer. There are only few
Hamiltonian parameters relative to all model parameters and the quantum state
strongly depends on the local field offset h̃z which directly depend on W(k)T . In
practice, it has proven to be necessary for the training of a HTHAE to not train
these parameters with gradient descent but instead with the optimizer.

The hybrid training of a HTHAE with several deep layers is fragile and requires
various considerations:
First, it is important that the learning rate of the gradient descent and the step
size of the cma-es optimizer are in some sort of balance for the model to converge.
Commonly, learning rates in deep layers of an Artificial Neural Network (ANN) are
the same or sometimes smaller than the learning rate of outer layers. The reason
for that being that changes in deeper layers affect the activations in all subsequent
layers and thus have a larger response on the outcome. In our case, the cma-es
optimizer’s step size is initiated to a significantly larger value than the learning rate
for the outer layers. In practice, this ensures a more robust training because the
gradient-free optimizer adapts more flexibly to changes in the optimization land-

58

scape. Also, the information flow in the hybrid training goes one way: The best
optimizer evaluations determine the gradients used. Strong gradients will merely
narrow down the space of solutions that are explorable by the optimizer.

A second important factor in training a HTHAE is the use of the leaky ReLU
activation function in all intermediate layers of the model. The ReLU activation
function has helped solving the so-called vanishing gradient problem in deep net-
works [47] which is very typical for the sigmoid activation function. It occurs when
the parameter constellation of an ANN is such that the layer activations fall in a
range where the derivative of the activation function is very small. Backpropagating
a small error gradient further reduces the absolute value of the gradient for every
layer until it practically vanishes. The piece-wise constant derivative of the leaky
ReLU does not have this problem and offers a more reliable interplay with the cma-
es optimization algorithm. The vanishing gradient problem in the HTHAE generally
causes the model to converge to average solutions where each input results in the
same output.
Additionally, the ’leaky’ property of the leaky ReLU, i.e. setting negative inputs to
small but non-zero values, makes it generally more robust in training. The hybrid
training relies on a dynamic interplay between the different optimization procedures
and benefits from nodes not outputting zeros after a certain breakpoint is reached.

Finally, to initialize the HTHAE, the Hamiltonian parameters and the network
weights are set to small values e.g. chosen randomly in the interval ∈ (−0.1, 0.1),
as well as the biases to 0.1. This will result in mostly positive initial activations
in all layers which receive strong gradients from the leaky ReLU and are close to
the non-linear region around zero. The Hamiltonian parameters should be small
enough such that initial h̃z offsets significantly impact the distribution of the Quan-
tum Boltzmann Machine in the qubit layer.

5.2.3 Training Analysis

To understand the training procedure of the Hybrid-trained Hamiltonian-based Au-
toencoder, we train a 196c-120c-20c-3q model on the first three binary 14x14 pixel
samples from the MNIST training data set (see Sec. 2.5 for details) and track several
metrics. Besides the mean square error as cost-function, we observe the values of
the local field offsets h̃z relative to the parameters of the foundation Hamiltonian H.
Their proportion indicate how strongly the quantum sample depends on the local
fields. Additionally, we measure the spectral energy gaps between the eigenstates
of the offset Hamiltonian H̃ and the groundstate percentage of the Boltzmann dis-
tribution. As for three training samples there is three h̃z and thus three H̃ in each
training iteration, we representatively only observe the measures connected to the
first training sample.

The results in Fig. 5.2.3 for one training run of the HTHAE unveil remarkable

59

0 50 100 150 200 250 300
0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Sq

ua
re

d
E

rr
or

0 50 100 150 200 250 300
400

200

0

200

400

Pa
ra

m
et

er
 V

al
ue

s Hamiltonian parameters
hz offsets

0 50 100 150 200 250 300
Training Iterations

0

50

100

150

200

250

300

G
ap

s
be

tw
ee

n
E

ig
en

st
at

es All Gaps
Gap to First Exited State

50%

100%

G
ro

un
ds

ta
te

 P
er

ce
nt

ag
e

Figure 5.2.3: Detailed visualization of important quantities in a 196c-120c-20c-3q
HTHAE during training on three binary 14x14 MNIST samples. Observed are the MS
error, the size of the input dependent h̃z offsets relative to the parameters of the foun-
dation Hamiltonian H, the groundstate percentage of the Boltzmann ensemble and the
gaps between the eigenstates in the Hamiltonian with added offset. The h̃z offsets become
overwhelmingly dominant compared to the other Hamiltonian parameters while the model
is converging. The system also is mostly in the groundstate with the distance to the first
exited state increasing drastically at the end. These results indicate that the HTHAE
tends towards a deterministic classical mapping between an input and a quantum sample
because the h̃z offsets fully determine the produced quantum sample.

insight into how the model operates. The MS error shows a first plateau at 0.065
which exactly corresponds to the pixel-wise average of all three training samples.
The second plateau at 0.0264 is the average between the first two training samples
where the third is distinctly learned. The plateauing behavior is a very typical re-
sponse in the training of a HTHAE. The classical gradients quickly optimize the
samples generated by the untrained QBM, i.e. it minimized the MS error on av-
erage for all possible QBM samples. A specific constellation and magnitude of
h̃z = WTu offset will dissolve the average of certain samples and improve the MS
error. When the model has successfully converged to distinct outputs for each in-
put, the offset parameters rapidly grow and fully determine the quantum samples

through si =
sign(h̃zi)+1

2
. This results in a product state of the qubits where if hzi is

large and positive, qubit i will always be 1, and vice-versa. The effect of the model’s
tendency to converge to these classical solutions is of course over-exemplified for

60

only three training samples where the model can overfit drastically.

The groundstate percentage shows that the model is predominantly in the ground-
state with some fluctuations before converging to a better solution. Certainly, the
degrees of freedom provided by additional eigenstates increase the ability to surpass
training plateaus but they seem mostly unused in this case. This measurement is
performed with a non-diagonal Hamiltonian in the quantum layer but interestingly,
the results are qualitatively equivalent for a model with diagonal Hamiltonian. In-
tuitively, one might expect a wider Boltzmann distribution over several eigenstates
because individual eigenstates only contain exactly one sample. Instead, the model
seems to mostly depend on the h̃z parameters to deterministically set the quantum
samples. The findings are coherent with the 7 gaps between the 8 eigenstates in the
offset Hamiltonian. The groundstate more strongly seperates itself for every better
solution that the model finds. This indicates that the training of the HTHAE will
tend towards a fully classical model with a deterministic mapping between input to-
and output of the qubit layer. For larger and more complicated training sets, this
may not be the general expected behavior of the model and is subject to further
study.

An interesting variation of the HTHAE that might change the behavior observed
in this section is to implement the qubit layer as a QBM with σxi σ

x
j term. This is

motivated by Sec. 3.2.5 where a QBM implemented on the qiskit Qasm simulator
shows considerably more reliable and quantum-like behavior with the coupling term
in transverse direction. It is possible that such a Hamiltonian would for a HTHAE
model to learn representations of the data that are more distributed and not fully
determined by the offset in computational basis.

5.2.4 Learning the Full MNIST Data Set

In this section, the Hybrid-trained Hamiltonian-based Autoencoder is trained with
the full 28x28 binary MNIST data set. The MNIST data set contains 60.000 training
samples and is a standard training set for testing and benchmarking Machine Learn-
ing algorithms. See Sec. 2.5 for details on the MNIST data set. The architecture is
785c-1000c-50c-6q with 6 qubits implementing a Quantum Boltzmann Machine in
the bottleneck layer. The model is trained with a batch size of 5 for 24.000 itera-
tions. This means that the model is performing stochastic training with 5 MNIST
samples in the training set for a given iteration. The choice for the batch size is gen-
erally a trade-off between computational time per iteration, memory requirements
and training performance. For this simulation, a batch size of 5 is remarkably small
and can certainly be increased. Note, that the input-dependent QBM needs to be
evaluated for every training sample in every iteration.
During training, the learning rate of the classical gradients was manually adapted
from η = 10−2 to η = 10−4.

61

With 6 qubits in the latent space, the model can output 26 = 64 different sam-
ples. Clearly, not all 60.000 training samples can be learned accurately to minimize
the mean square error. For ten different hand written digits ’0’ - ’9’, there can be an
average of six to seven variations of each digit. Some handwritten digits vary more
in their style than others, e.g. the digit ’4’ which is commonly written in two topo-
logically different ways, and some are more complex than other, e.g. compare the
simple digit ’1’ to an ’8’. This will significantly impact how many different quantum
samples are assigned to a specific digit. The model has to learn to minimize the
reconstruction error on average and distribute its resources accordingly. Realisti-
cally, not all 64 quantum samples will result in a meaningful output which may be
an artifact of incomplete training but also partly because of the shared-weights of
the Autoencoder are less flexible to address each different quantum sample and also
reconstruct each sample to a good output.

Fig. 5.2.4 shows the final results of the trained Hybrid-trained Hamiltonian-based
Autoencoder when inputting the first 24 images of the MNIST test data set. The
test data samples are unknown to the model and have never been input before.
The outputs are the results of upsampling the most likely quantum sample in the
respective input-dependent QBM.
The average mean square error for all training and test data respectively are

MS-Error(training) = 0.046± 0.019

MS-Error(test) = 0.047± 0.018
(5.10)

Remarkably, the model performs equally well on the training and the test set. It
has very few degrees of freedom in the qubit bottleneck layer compared to the total
number of 60.000 training samples which is why all learned features need to be as
generally applicable to MNIST data samples as possible. It is also apparent in Fig.
5.2.4 that the HTHAE is able to learn significant features of the training data which
generalize to new data. One can see the compromise the model makes for different
inputs. The digits ’7’ and ’9’ often output the same group of samples, whereas ’0’
and ’1’ are very distinct compared to other digits.
In this case, it may not be very surprising that the model generalizes well to unseen
data. Common practices to prevent overfitting (see Sec. 1.2.2) make a model weaker
so that it can’t perfectly fit each input training sample. With 6 qubits and 64 pos-
sible outcomes, the HTHAE is put in a situation where it must learn the broadest
generalization of numbers in order to reduce the cost-function.

A more intuitive score on the test data is provided in Table 5.1 which shows
manually-counted subjective judgments of whether or not a test sample input was
successfully reconstructed. The judgement not only takes into account the quality
of the most likely samples, but also their confidence and the quality of the second
most likely sample. As the score is subjective and only takes into account the first
100 test samples of the MNIST data set, it is not to be understood as objective

62

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

Figure 5.2.4: Output of a trained HTHAE model for 24 previously unseen samples of
the MNIST test data set. The model was trained for 24.000 iterations on the full MNIST
training data set and a batch size of 5. Outputs are the result of upsampling the most
common quantum sample in response to a given input.

63

quantitative score. An interested reader may take a closer look at Fig. 5.2.4 and
judge the first 24 test samples by themselves.

Correct Unclear / Mix Wrong
59% 15% 26%

Table 5.1: Manually-counted subjective score of the trained HTHAE when inputting the
first 100 samples of the MNIST test data set. Those test samples are previously unknown
to the model. It was trained on the full MNIST training data set with a batch size of 5 and
24.000 training iterations. The score takes into account the quality of the most common
output of the Autoencoder for a given input, its confidence, and the quality of the second
most common output.

Many times, the confidence of the most likely sample is above 90% or exactly 100%.
This indicates that the model tends to learn deterministic mappings between input
and binary quantum samples s, as shown by the results in Sec. 5.2.3. Still, that is
not the case for all samples and one might learn more about the data set by study-
ing the non-determinative distribution in the latent space. This is a feature that
is qualitatively different to conventional implementations of classical Autoencoders
and warrants further study.

5.2.5 Benchmarking a Potential Quantum Advantage

In this section, we test a potential quantum advantage in the Hybrid-trained Hamiltonian-
based Autoencoder with 100c-60c-20c-3q network architecture. A HTHAE model
with diagonal Hamiltonian acts as classical reference for a HTHAE with non-diagonal
Hamiltonian which is considered quantum. For the benchmarking, both models are
trained on different training data sets, random training sets and a 10x10 MNIST
training sets. For both types of training sets, we train the models on binary and
continuous-valued versions of the data in order to test for certain strengths and
weaknesses. After training, the final mean square error on the training sets is eval-
uated and calculated in to a fitness difference between the classical and quantum
model. The fitness difference is the negative difference between the MS errors of the
models. A positive difference indicates a quantum advantage where the quantum
model with non-diagonal Hamiltonian was able to converge to a solution with over-
all lower MS error. The number of training iterations is 800 where in practice the
models have shown to have either converged to a good solution of plateaued for a
long time.

The measurements are performed on training sets of different sizes, i.e. different
number of samples in each training set. The size of the training set is an important
external parameters in the benchmarking because of two reasons. First, it shows
how many samples a model can distinctly learn such that each input sample results
in a different reconstructed output. Second, quantifies how well a model utilizes its
resources to average similar inputs the the same output if it is not able to distinctly

64

HTHAE on Random Training Sets
Binary

2 3 4 6 8
Size of Training Set

0.2

0.1

0.0

0.1

0.2

Fi
tn

es
s

D
iff

er
en

ce

2 3 4 6 8
Size of Training Set

0.00

0.05

0.10

0.15

0.20

Sq
ua

re
d

E
rr

or

quantum
classical

Continuous

2 3 4 6 8
Size of Training Set

0.2

0.1

0.0

0.1

0.2

Fi
tn

es
s

D
iff

er
en

ce

2 3 4 6 8
Size of Training Set

0.00

0.05

0.10

0.15

0.20

Sq
ua

re
d

E
rr

or

quantum
classical

HTHAE on 10x10 MNIST Training Sets
Binary

2 3 4 6 8
Size of Training Set

0.10

0.05

0.00

0.05

0.10

Fi
tn

es
s

D
iff

er
en

ce

2 3 4 6 8
Size of Training Set

0.00

0.02

0.04

0.06

0.08

0.10

Sq
ua

re
d

E
rr

or

quantum
classical

Continuous

2 3 4 6 8
Size of Training Set

0.10

0.05

0.00

0.05

0.10

Fi
tn

es
s

D
iff

er
en

ce

2 3 4 6 8
Size of Training Set

0.00

0.02

0.04

0.06

0.08

0.10

Sq
ua

re
d

E
rr

or

quantum
classical

Figure 5.2.5: Benchmarking results for a potential quantum advantage in a 100c-60c-
20c-3q HTHAE. A quantum advantage is defined as a smaller mean square error when
comparing a HTHAE with non-diagonal Hamiltonian (blue) to a HTHAE with diagonal
Hamiltonian (grey). The diagonal model is taken as classical reference while the non-
diagonal is considered quantum. Quantum and classical models are trained of random
training sets and 10x10 MNIST training sets of different sizes, i.e. increasing number
of training samples. Their error after training is calculated into a fitness difference. A
positive fitness difference (blue shaded area) indicates a quantum advantage. 40 individual
runs are marked as dots while the 25%-75% percentiles are shown as boxes.

reconstruct them. This is especially relevant for the MNIST data set which has
systematic structure and may contain more than one instance of the same digit. Be-
cause the qubit layer and the input-dependent Quantum Boltzmann Machine need
to be evaluated for every training sample in every training iteration, the sizes of
training sets in this section are limited by computational time. Consequently, the
number of training samples do not exceed the possible number of quantum samples,
though in practice, not all quantum samples will contribute in the trained model.

The benchmarking results for the HTHAE in Fig. 5.2.5 show that the classical ref-
erence model with diagonal Hamiltonian generally outperforms the quantum model
with non-diagonal Hamiltonian on continuous-valued data. For binary data, the
results are indecisive. Interestingly, the results in Sec. 5.1.3 for the Hamiltonian-
based Autoencoder are qualitatively the same. This indicates that the results are
not directly caused by the hybrid training approach of the HTHAE.
It is not clear why the quantum model performs worse on continuous data than the
classical equivalent. One of the key properties of the HTHAE network is the h̃z offset

65

HTHAE on 28x28 MNIST Training Sets
Binary

2 3 4
Size of Training Set

1.0

0.5

0.0

0.5

1.0
Fi

tn
es

s
D

iff
er

en
ce

1e 2

2 3 4
Size of Training Set

0.0

0.2

0.4

0.6

0.8

1.0

Sq
ua

re
d

E
rr

or

1e 2
quantum
classical

Continuous

2 3 4
Size of Training Set

1.0

0.5

0.0

0.5

1.0

Fi
tn

es
s

D
iff

er
en

ce

1e 2

2 3 4
Size of Training Set

0.0

0.2

0.4

0.6

0.8

1.0

Sq
ua

re
d

E
rr

or

1e 2
quantum
classical

Figure 5.2.6: Benchmarking results for a potential quantum advantage in a 784c-500c-
50c-3q HTHAE. A HTHAE with diagonal Hamiltonian and one HTHAE with non-diagonal
Hamiltonian are trained on binary (left) and continuous (right) 28x28 MNIST training sets
of different sizes, i.e. increasing number of training samples. Both models always learn
very good reconstructions of the samples which have spatially well resolved features.

to the local fields in the Hamiltonian. The offset is strictly in the computational z-
basis and therefore classical. It is possible to assume that these classical constraints
provided by the local field offsets don’t naturally promote quantum effects such as
superposition and entanglement in the eigenstates of the Hamiltonian. Also, for the
task of learning reconstruction through overfitting, which is the case in this section
with such small training sets, superposition might even prove to be a drawback.
It is not directly beneficial for the minimization of the cost to produce more than
one sample given that one good sample is optimal for the MS error. Conversely,
if instead the offset is in transverse direction with h̃x, the model in practice has
shown to never converge to good solutions because the decoder network would need
to upsample each quantum sample that is part of the superposition into the same
reconstructed output.
A promising alternative to the transverse field offset h̃x is to implement a different
non-diagonal Hamiltonian for the QBM, e.g. one with σxi σ

x
j term. As shown in Sec.

3.2.5, it might improve the training performance of the QBM.

These observations warrant interesting experimental setups which are not shown
in this work. Before all, testing generalization of the models by measuring the final
square error not on the training set but on previously unseen test sets. This is
especially possible on the MNIST data set.
Additional factors dismissed in this work are for example robustness to noise and
input of systematically different data. One would generally like for the model not
to create sharp output with 100% confidence if the input is very noise or follows are
completely different structure than the training data. For practical application in
moder data analyis, those are important properties and need to be considered.

Note, that equivalent benchmarking protocol is also performed on full-size 28x28
MNIST training sets. The results are shown in Fig. 5.2.6. Both classical and quan-
tum model are able to learn the large training samples significantly better and fully

66

converge almost always. This indicates that the benchmarking of a potential quan-
tum advantage as presented here is insufficient for training data where structural
features are considerably better resolved. For better a better comparison between
the classical and the quantum model, the number of training samples per training
set needs to be increased to 6-8 with an interesting outlook to even more training
samples.

67

5.3 The Gate-based Autoencoder

The Gate-based Autoencoder (GAE) is a quantum-assisted Autoencoder algorithm
that implements qubits in the bottleneck layer of the network. Unlike the Hamiltonian-
based Autoencoders described in this chapter, the behaviour of the qubit layer of
the GAE is governed by quantum circuits consisting of parametrized gates. Inputs
to the GAE are propagated towards the qubit layer and non-linearly calculated into
single-qubit rotation angles. The rotated qubit state is thus fully parametrized by
the encoder network of the GAE and can be measured to create quantum samples.
The quantum samples are then upsampled to output a high-quality reconstruction
of the original input. The code implementation of the GAE in this section can be
found on github [51][52].

5.3.1 Model Description

The model architecture of the GAE can be seen in Fig. 5.3.1. It is structurally
very similar to the Hybrid-trained Hamiltonian-based Autoencoder in Sec. 5.2 and
consists of an encoder network, a qubit layer in the middle bottleneck layer, and
a decoder network. The essential difference to the Hamiltonian-based quantum-
assisted Machine Learning algorithms in this work lies in the qubit layer and the
input-dependency of the qubit states. The qubit states are initialized in the |0〉⊗n
state and then rotated by parametrized single-qubit quantum gates. The parameter-
ized quantum circuit ansatz employed in this algorithm is very natural for gate-based
quantum computers. With the complications shown in Sec. 3.2.5 with implementing
Hamiltonian-based Quantum Machine Learning algorithms on gate-based quantum
devices, this may be the algorithm of choice when implementing a quantum-assisted
Autoencoder. This is especially true when considering that one does not have to in-
directly find Hamiltonian eigenstates by using the Variational Quantum Eigensolver
(Sec. 2.2) but can instead directly implement the relevant operations on the qubits
themselves.

The rotation angles θ for the single-qubit rotations in the qubit layer are calcu-
lated as a non-linear transformation on the output of the encoder network which is
given by

θ = sig(Wu + b) · π (5.11)

where u are the activations of the previous layer given an input x to the model, W
are the weights connecting the previous layer and the qubit layer and b biases for
each qubit. The activation function is the sigmoid activation function sig which has
values in the range of (0, 1). Those values are transformed to angles in a range of
θ ∈ (0, π) to connect the tails of the sigmoid function to the qubit states of 0 and
1. A change in the network parameters before the qubit layer therefore results in
a change of the θ rotation angle. The parametrized quantum circuit on the initial
qubit state essentially serves the purpose of separating the different input data in

68

Figure 5.3.1: Network architecture of the Gate-based Autoencoder (GAE). The GAE
is a quantum-assisted Autoencoder which implements qubits in the bottleneck layer of
the network. Given an input to the network, the output of the encoder is calculated into
single-qubit rotations. The input-dependent qubit state is then measured and upsampled
by the decoder.

the exponentially growing Hilbertspace. Hopefully, the model can learn to keep data
with similar features closer together than distinctly different data.
The angle range of θ ∈ (0, π) is somewhat arbitrarily chosen an can be changed.
Note, that for an example range of θ ∈ (0, 2π), si = 0 is located at both tails and
si = 1 and the point of strongest gradient of the sigmoid function. This is an asym-
metry we do not currently want to employ.

The matrix exponential which describes the single-qubit gates applied on the initial
qubit state is

|ψ〉 =
∏
i

e−iθiσ̂
x
i |0〉i. (5.12)

The rotations are X-rotations, as indicated by the σ̂x Pauli operator. There is no
interaction between the qubits and the resulting wavefunction is a strict product
state.
It is possible to employ a more complicated parametrized state preparation with en-
tangling operations similar to the state preparation of the Direct Variational Gen-
erator in Sec. 3.1. Entanglement between individual qubits might enhance the
performance of the GAE but this is not implemented in this work.

The encoder and the decoder networks which perform the downsampling of an in-
put x toward the qubit layer and the subsequent upsampling of quantum samples to

69

produce an output v respectively are equivalent to the Hamiltonian-based Autoen-
coders described in this work. For detailed explanation of the network architecture,
see Secs. 5.1 & 5.2.

5.3.2 Training

The training of the Gate-based Autoencoder consists tuning the parameters of the
GAE in order to minimize the reconstruction error between an input x and the
output vof the model. The reconstruction error is measured with the mean square
error cost-function (see. Eq (5.9)).
One has the choice of the number of layers in the encoder and decoder networks.
The GAE studied in this work consists of five layer, two layers in the encoder,
one qubit layer, and two layers in the decoder. Following the results in Sec. 4.2,
we perform the hybrid training method on the model. Consequently, we employ
shared-weights in the encoder and deconder networks. The parameters optimized
by the cma-es opimizer are the biases of the qubits and the weights of the adjacent
layers (see Eq. (5.11)). The remaining outer network parameters are trained with
gradients descent. See Sec. 5.2.2 for more details on the hybrid training of deep
quantum-assisted Autoencoders.

5.3.3 First Training Results

To provide prove of principle of the Gate-based Autoencoder, we train a GAE
with a network architecture of 784c-120c-3q and 3 qubits on a subset of the 28x28
continuous-valued MNIST data set (see Sec. 2.5 for information on the MNIST data
set). Selected for the training set are the first four ’4’s, four ’0’s and four ’3’ of the
MNIST training data. The number of training samples is therefore larger than the
23 = 8 states available in the qubit layer. It is to show that this GAE can learn an
efficient representation of the training set by pairing different training samples to
the same output.

Fig. 5.3.2 shows the final results of the trained GAE model after 2.000 training
iterations when inputting the 12 training samples. The GAE is visibly capable of
learning good reconstructions of the training samples. 6 out of 8 possible quantum
samples are used to perform the reconstruction. Interestingly, the model has learned
that samples with the digit ’4’ vary the most and therefore require additional de-
grees of freedom.
To show that the model has not overfitted on the training data, we test the model
on the first examples of the respective digits in the MNIST test data which are
previously unseen. Fig. 5.3.3 shows the performance the test samples. The model
seems to generalize quite well but it is apparent that it has not been trained on
enough variations of the digits. Especially the fourth ’0’, which is very different to
the other examples, results in a completely untrained sample.
Given that the GAE as explained in this section implements a product state ansatz

70

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

Figure 5.3.2: Demonstration of a 784c-120c-3q GAE after successful training on
12 selected 28x28 MNIST data samples. Inputs are the same 12 MNIST images
that were used to train the model. Outputs are the result of upsampling the most
common quantum sample in response to a given input.

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

Figure 5.3.3: Demonstration of a 784c-120c-3q GAE after successful training on
12 selected 28x28 MNIST data samples. Inputs are 12 previously unseen MNIST
data samples. Outputs are the result of upsampling the most common quantum
sample in response to a given input.

71

for the qubit layer, the results are surprisingly good. Sec. 5.2.3 shows that also the
Hamiltonian-based Autoencoder tends towards a classical mapping between input
and output where interactions in the quantum system are no longer relevant. It is
remarkable that interactions are also not strictly needed in training the GAE and
to achieve first good results on MNIST data.

5.3.4 Learning the Full MNIST Data Set

In order to better evaluate the learning and generalization capabilities of the Gate-
based Autoencoder, the model is trained on the full-size 28x28 binary MNIST data
set. The quantum-assisted network has an architecture of 784c-1000c-50c-6q with
6 qubits in the bottleneck layer. The GAE is trained for 24.000 training iterations
with a batch size of 5. These are the same hyperparameters as for the Hybrid-trained
Hamiltonian-based Autoencoder in Sec. 5.2.4 to allow for a better comparison be-
tween the algorithms. The learning rate for gradient descent on the outer classical
layers is kept constant at a η = 10−3.

Fig. 5.3.4 shows the final performance of the Gate-based Autoencoder on the first
12 samples of the previously unseen MNIST test data set. It is apparent that the
model does not succeed in learning the general structure of MNIST data samples
that would allow it to perform high-quality reconstruction on test samples. In fact,
the GAE performs equally on the training set. The mean square error on the entire
training and test data respectively are

MS-Error(training) = 0.083± 0.024

MS-Error(test) = 0.081± 0.024
(5.13)

Compared to the results in Eq. (5.10) for the HTHAE, the GAE performs consider-
ably worse. One explanation that suggests itself is that the qubit layer contains no
interaction between the qubits. The ansatz for the GAE as explained in this section
is to only apply parametrized single-qubit rotations.
A natural extension for the Gate-based Autoencoder is to implement single-qubit
rotations together with entangling operations. It is to be studied if interactions
improve the performance of the model significantly and if it it is beneficial to im-
plement a more involved state preparation ansatz like for the DVG in Sec. 3.1
with consecutive cycles of single-qubit rotations and entangling gates. To test if
interactions between the qubits or entanglement are the leading cause for improved
performance in the quantum-assisted Autoencoders proposed in this work, the same
experimental setup could be performed with the HTHAE with diagonal Hamilto-
nian. This model implements interaction between qubits but no entanglement as the
Quantum Boltzmann Machine with diagonal Hamiltonian is equivalent to a classical
Boltzmann Machine [6].

72

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

input output

Figure 5.3.4: Demonstration of the GAE results after 24.000 training iterations on the
full MNIST data set and a batch size of 5. Inputs are the first 12 images of the MNIST test
data set which are is previously unseen to the model. Outputs are the result of upsampling
the most common quantum sample in response to a given input.

73

6 Conclusion & Outlook

The aim of this work was to explore practical implementations of Quantum and
Quantum-assisted Machine Learning algorithms and benchmark potential benefits
of utilizing quantum phenomena in Quantum-assisted Neural Networks. It provided
several examples of generative single qubit-layer algorithms as well as quantum-
assisted generative and Autoencoder algorithms with qubit layers in essential loca-
tions of the networks.

Two known generative Quantum Machine Learning algorithms, the Direct Varia-
tional Generator (DVG) [9] and the Quantum Boltzmann Machine (QBM) [6] were
discussed. The purpose of the DVG was to demonstrate the sampling advantages of
generative algorithms that utilize qubits. The qubit wavefunction encoding the tar-
get probability distribution can be sampled efficiently by measuring the qubit state.
In contrast to classical sampling where the sampling is either global but inefficient or
efficient but local, the quantum sample is always a global sample of the true encoded
distribution. We demonstrated the sampling advantage in the DVG compared to
a Restricted Boltzmann Machine by training both models on the Bars-and-Stripes
(BAS) training set and interpreting the sequence of the generated samples as a ran-
dom walk. By deriving expected average behavior of that BAS random walk, we
introduced a quantitative measure that not only considers the quality of the learned
distribution but also the randomness of the sampling technique.

The Quantum Boltzmann Machine is the quantum extension of the classical Boltz-
mann Machine. It is based on a spin-Hamiltonian which can be chosen to be diagonal
or non-diagonal. We showed that just the groundstate of a non-diagonal Hamilto-
nian can be trained to approximate random data distributions. This indicates that
a full QBM framework, which includes a hierarchy of thermally exited states in
the density matrix, might not be necessary in Hamiltonian-based models as long as
quantum fluctuations are included. This indicates that in this situation quantum
fluctuations and thermal fluctuations act similarly. When implementing a QBM on
gate-based quantum computers with the Variational Quantum Eigensolver (VQE),
we found that a Hamiltonian with σxi transverse fields is not generally suited for the
training of a quantum groundstate. The model may run into a degenerate solution
space which sends an unreliable training signal. A Hamiltonian which includes an
interaction term like σxi σ

x
j could resolve the problem in the example provided in this

work though there are still conflicting solutions for that case. These results imply
the necessity to consider the complexity of the achievable groundstate in order to
attain satisfactory results and which quantum algorithm to implement on a given

75

quantum device.

The proposed Quantum-assisted Generator (QaG) allows for taking advantage of
the efficient sampling properties of qubit systems in larger overall networks with
additional classical layers while reducing the number of qubits required to put near-
term quantum computing devices to practical use. The qubit layer implements a
truncated QBM with a parametrized number of eigenstates. We find that for a di-
agonal QaG, the truncation parameter t may serve as an approximation parameter
in learning a target distribution. Conversely, the non-diagonal QaG is agnostic to
the truncation which implies that this Hamiltonian-based algorithm can be imple-
mented on quantum devices that create mixed states or pure states.
In a systematic benchmarking of the Quantum-assisted Generator, we observed per-
formance enhancing effects of implementing a quantum Hamiltonian as compared
to a classical Hamiltonian. The quantum model on average converged to signifi-
cantly better approximations of the training data compared to the classical model.
Interestingly, the quantum advantage was maintained when just perfoming ground-
state training on a quantum Hamiltonian. This indicates that quantum systems
may more easily navigate complex cost-function landscapes in quantum-assisted al-
gorithms. Further benchmarking with different training methods and models is
required to evaluate whether quantum effects generally enhance the performance of
generative Machine Learning algorithms.
To move towards practical application of a qubit quantum layer in a large gener-
ative network, we developed a hybrid-training method to train quantum-assisted
neural network which cannot be efficiently trained with the conventional methods
of gradient descent and backpropagation. The hybrid-training consists of a dynamic
interplay of the gradient-free cma-es optimization algorithm on the parameters of
the qubit layer and gradient descent on the remaining classical network parameters.
We showed a significant improvement in convergence rate when using the hybrid-
training method compared to a pure cma-es optimization approach.

The Quantum-assisted Autoencoder networks studied in this work utilize a qubit
layer as the bottleneck layer of a Autoencoder architecture. The first Autoencoder
presented was the Hamiltonian-based Autoencoder (HAE). As for the QaG, the
qubit layer follows a QBM framework on a spin-Hamiltonian. The ansatz for mak-
ing the qubit layer input dependent is to calculate the output of the encoder network
of the Autoencoder into local field offsets in computational basis. A HAE with n
qubits has 2n possible outputs irrespective of the number of input samples and thus
an interesting application in clustering arises where the HAE learns effective group-
ing of inputs to the network into the same output. We could not confirm an equiv-
alent quantum advantage in the HAE as in the QaG. In fact, for continuous-valued
training samples, the classical model with diagonal Hamiltonian outperformed the
quantum model and generally achieved a better training performance.
The Hybrid-trained Hamiltonian-based Autoencoder is a scalable extension of the
HAE with additional classical network layers. We showed that a HTHAE with

76

Figure 6.1: Schematic network architecture of a proposed Gate-based Autoencoder which
implements interactions in the qubit layer. In the qubit layer, this algorithm utilizes
input-dependent single-qubit rotations and entangling operations UE between qubits to
parametrize the quantum state in response to an input to the Autoencoder. The entangling
operations here are depicted as two-qubit gates which is an arbitrary choice. Depending
on the quantum device, they can be multi-qubit or global entangling operations.

non-diagonal Hamiltonian and only 6 qubits could be trained on the full MNIST
training data set with promising results. The algorithm evidently makes use of
grouping similar inputs into the same output and thus has good generalization ca-
pabilities. We also found that with the local field offset approach, the HTHAE has
the tendency to learn deterministic classical mappings between inputs and quan-
tum samples. Additionally, we showed the same lack of quantum advantage in the
HTHAE as in the HAE. The results were indecisive for binary training data while
the classical model outperformed on continuous data. It is plausible that these re-
sults are partly caused by the tendency of the HTHAE to learn classical mappings
where the quantum model has additional unnecessary parameters that need to be
tuned. An essential piece of understanding that has not been investigated is how
the quantum model and the classical model group different inputs and how well
they generalize. It is reasonable to assume that the classical model performs very
well in the task of overfitting the training data and in that better than the quantum
model. It has to be determined whether the quantum model, which here seems to be
at a disadvantage in overfitting the training data, is better suited to learn efficient
groupings of data and learn broader features.

A final quantum-assisted Autoencoder proposed in this work is the Gate-based
Autoencoder (GAE). The GAE is an Autoencoder algorithm which applies input-
dependent single-qubit gates in the qubit layer in order to separate inputs in the
qubit Hilbertspace. It was trained with the hybrid-training method developed in this
work which highlights the flexibility of the training approach. In this work, we used
a product state ansatz for the quantum circuit as there were no interactions between
the qubits. Even so, the GAE performed well on first training simulations on few

77

MNIST data samples. When training the model on the full MNIST training data
set, we observe considerably inferior training results compared to the HTHAE. A
straight-forward extension of the model is to include interactions between qubits in
the quantum circuit of the Gate-based Autoencoder. A potential modified model is
depicted in Fig. 6.1 which could be used in future work. In particular, the question
whether classical interactions are sufficient or if quantum entanglement is necessary
to effectively train the model on given data could be addressed by investigating dif-
ferent couplings UE between the qubits. We think that valuable insights could from
arise this which would help clarifying the role of true quantum effects introduced by
quantum layers for future Quantum Machine Learning applications.

78

7 Bibliography

[1] S. Aaronson. Read the fine print. Nature 11, 291-293, 2015.

[2] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, et al. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from tensorflow.org.

[3] Héctor Abraham, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz, Thomas
Alexander, et al. Qiskit: An open-source framework for quantum computing,
2019.

[4] A.Khoshama and W.Vinci. Quantum Variational Autoencoder.
arXiv:1802.05779, 2019.

[5] Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation. Rev.
Mod. Phys., 90:015002, Jan 2018.

[6] M.H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko. Quantum
boltzmann machine, 2018.

[7] I. Arrazola, J. Pedernales, and L. Lamata et al. Digital-analog quantum simu-
lation of spin models in trapped ions, 2016.

[8] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, et al. Quantum supremacy using
a programmable superconducting processor. Nature, 574(7779):505–510, 2019.

[9] M. Benedetti, D. Garcia-Pintos, O. Perdomo, V. Leyton-Ortega, Y. Nam, and
A. Perdomo-Ortiz. A generative modeling approach for benchmarking and train-
ing shallow quantum circuits. arXiv:1801.07686v3, 2019.

[10] M. Benedetti, J. Realpe-Gomez, and A. Perdomo. Quantum-assisted Helmholtz
machines: A quantum-classical deep learning framework for industrial datasets
in near-term devices. Quantum Science and Technology 3, 034007, 2018.

[11] Paul Benioff. The computer as a physical system: A microscopic quantum
mechanical hamiltonian model of computers as represented by turing machines.
Journal of Statistical Physics, 22(5):563–591, 1980.

[12] Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore
Mandrà, Bryan O’Gorman, Alejandro Perdomo-Ortiz, Andre Petukhov, John
Realpe-Gómez, Eleanor Rieffel, Davide Venturelli, Fedir Vasko, and Zhihui

79

Wang. A nasa perspective on quantum computing: Opportunities and chal-
lenges, 2017.

[13] T. Blaschke, M. Olivecrona, O. Engkvist, J. Bajorath, and H. Chen. Application
of generative autoencoder in de novo molecular design, 2017.

[14] Sergio Boixo, Troels F. Rønnow, Sergei V. Isakov, Zhihui Wang, David Wecker,
Daniel A. Lidar, John M. Martinis, and Matthias Troyer. Evidence for quantum
annealing with more than one hundred qubits. Nature Physics, 10(3):218–224,
2014.

[15] H.-J. Briegel, T. Calarco, D. Jaksch, J. I. Cirac, and P. Zoller. Quantum
computing with neutral atoms. Journal of Modern Optics, 47(2-3):415–451,
2000.

[16] Iulia Buluta and Franco Nori. Quantum simulators. Science, 326(5949):108–
111, 2009.

[17] Juan Carrasquilla, Giacomo Torlai, Roger G. Melko, and Leandro Aolita. Re-
constructing quantum states with generative models. Nature Machine Intelli-
gence, 1(3):155–161, 2019.

[18] E. Chen. restricted-boltzmann-machines. GitHub repository,
https://github.com/echen/restricted-boltzmann-machines.

[19] W. Cottrell, B. Freivogel, D. M.Hofman, and S.F. Lokhande. How to Build the
Thermofield Double State. arXiv:1811.11528, 2018.

[20] Dong-Ling Deng, Xiaopeng Li, and S. Das Sarma. Quantum entanglement in
neural network states. Phys. Rev. X, 7:021021, May 2017.

[21] Alejandro Perdomo-Ortiz et al. Opportunities and challenges for quantum-
assisted machine learning in near-term quantum computers, 2018.

[22] P.J.J. O’Malley et al. Scalable quantum simulation of molecular energies, 2016.

[23] Richard P. Feynman. Simulating physics with computers. International Journal
of Theoretical Physics, 21(6):467–488, 1982.

[24] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu, D. Maslov,
and C. Monroe. Parallel entangling operations on a universal ion-trap quantum
computer. Nature, 572(7769):368–372, 2019.

[25] L. Gondara. Medical image denoising using convolutional denoising autoen-
coders, 2016.

[26] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial networks, 2014.

80

[27] D.J. Griffith and D.F. Schroeter. Introduction to Quantum Mechanics. Cam-
bridge University Presss Third Edition, 2018.

[28] Lov K. Grover. A fast quantum mechanical algorithm for database search, 1996.

[29] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on
Github. Zenodo, DOI:10.5281/zenodo.2559634, feb 2019.

[30] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm
for linear systems of equations. Physical Review Letters, 103(15), Oct 2009.

[31] G. Hinton and T. Sejnowski. Learning and relearning in boltzmann machines.
Parallel Distributed Processing, 1, 01 1986.

[32] G. E. Hinton* and R. R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313:504–507, 7 2006.

[33] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and
J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets, 2017.

[34] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale
ion-trap quantum computer. Nature, 417(6890):709–711, 2002.

[35] B. Lamberta, Y. Katariya, M. Daoust, and Diego. Deep convolutional genera-
tive adversarial network. GitHub, Feb 2020.

[36] B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer,
P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller,
R. Blatt, and C. F. Roos. Universal digital quantum simulation with trapped
ions. Science, 334(6052):57–61, 2011.

[37] Ryan LaRose. Overview and Comparison of Gate Level Quantum Software
Platforms. Quantum, 3:130, March 2019.

[38] J. Larsen and L. K. Hansen. Generalization performance of regularized neural
network models. In Proceedings of IEEE Workshop on Neural Networks for
Signal Processing, pages 42–51, Sep. 1994.

[39] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The mnist databas
of handwritten digits.

[40] W. Lenz. Beiträge zum verständnis der magnetischen eigenschaften in festen
körpern, 1920.

[41] J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech coding.
Proceedings of the IEEE, 73(11):1551–1588, Nov 1985.

81

[42] M.Benedetti, J.Realpe-Gomez, and A.Perdomo-Ortiz. Quantum-assisted
Helmholtz machines: A quantum-classical deep learning framework for indus-
trial datasets in near-term devices. arXiv:1708.09784, 2018.

[43] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint
Richardson, Charles K. Fisher, and David J. Schwab. A high-bias, low-variance
introduction to machine learning for physicists. Physics Reports, 810:1–124,
May 2019.

[44] F. Mosteller. Probability and Statistics. Addison-Wesley Pub Co, First Edition,
1961.

[45] N. M. Nasrabadi and R. A. King. Image coding using vector quantization: a
review. IEEE Transactions on Communications, 36(8):957–971, Aug 1988.

[46] J.v. Neumann. Mathematische Grundlagen der Quantenmechanik. Springer,
2011.

[47] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Mar-
shall. Activation functions: Comparison of trends in practice and research for
deep learning, 2018.

[48] S. Brierley O. Higgott, D. Wang. Variational quantum computation of exited
states, 2019.

[49] Román Orús, Samuel Mugel, and Enrique Lizaso. Quantum computing for
finance: Overview and prospects. Reviews in Physics, 4:100028, 2019.

[50] J. Rocca. Understanding variational autoencoders (vae). 9 2019.

[51] M. Rudolph, F. Jendrzejewski, and S. Schmitt. KIP Quantum Machine Learn-
ing. GitHub repository, https://git.kip.uni-heidelberg.de/fnj/kipqml, 2020.

[52] M. Rudolph, F. Jendrzejewski, and S. Schmitt. Near-Term Quantum Machine
Learning. GitHub repository, https://github.com/HRI-EU/NTQML, 2020.

[53] D. E. Rumelhart and J. L. McClelland. Information Processing in Dynamical
Systems: Foundations of Harmony Theory, pages 194–281. MITP, 1987.

[54] Matthias Rupp, Raghunathan Ramakrishnan, and O. Anatole von Lilienfeld.
Machine learning for quantum mechanical properties of atoms in molecules.
The Journal of Physical Chemistry Letters, 6(16):3309–3313, Aug 2015.

[55] Sentewolf. Concept of directional optimization in cma-es algorithm, Oct 2008.

[56] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, Oct 1997.

82

[57] Anders Sørensen and Klaus Mølmer. Spin-spin interaction and spin squeezing
in an optical lattice. Phys. Rev. Lett., 83:2274–2277, Sep 1999.

[58] J.L. Ticknor. A bayesian regularized artificial neural network for stock market
forecasting. 40:5501–5506, 2013.

[59] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger
Melko, and Giuseppe Carleo. Neural-network quantum state tomography. Na-
ture Physics, 14(5):447–450, 2018.

[60] Hayato Ushijima-Mwesigwa, Christian F. A. Negre, and Susan M. Mniszewski.
Graph partitioning using quantum annealing on the d-wave system. In Proceed-
ings of the Second International Workshop on Post Moores Era Supercomputing,
PMES’17, page 22–29, New York, NY, USA, 2017. Association for Computing
Machinery.

[61] P. Weinberg and M. Bukov. Quspin: a python package for dynamics and exact
diagonalisation of quantum many body systems part i: spin chains, 2017.

[62] Nathan Wiebe, Christopher Granade, Christopher Ferrie, and D. G. Cory.
Hamiltonian learning and certification using quantum resources. Phys. Rev.
Lett., 112:190501, May 2014.

[63] Jaime Zabalza, Tong Qiao, Jiangbin Zheng, Huimin Zhao, Chunmei Qing, Zhi-
jing Yang, and Stephen Marshall. Novel segmented stacked autoencoder for
effective dimensionality reduction and feature extraction in hyperspectral imag-
ing. Neurocomputing, 185, 12 2015.

[64] W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regular-
ization. 2015.

83

Appendices

85

A Benchmarking a Quantum Advantage on
a QBM

In this section, we test for a potential quantum advantage in training of a Quantum
Boltzmann Machine. Here, a quantum advantage is defined as a superior training
performance of a QBM with non-diagonal Hamiltonian as compared to a QBM with
diagonal Hamiltonian. The diagonal model acts as classical reference while the non-
diagonal model is considered quantum. Both models are given the same random
binary training sets and are trained for 500 training epochs. At the end of training,
the overlap of each model with the training set is calculated and compared. The
experiment is repeated for a different number of random binary training samples in
the training set and averaged over 40 repetitions.

Fig. A.1 shows that after 500 iterations and 40 repetitions, there is never a run
where either QBM model converges to a solution that is more than 3 · 10−6 different
in overlap than the other model. There is no quantum advantage found in this setup
and no difference at all between the models. Instead, both models always converge
with high accuracy which implies that this task is too simple for potential quantum
effects to make a difference. As the training data was random with no structure
and arbitrary shape, it is unclear which kinds of data are challenging for a QBM.
In this setup, there is no pre-processing of the classical data and no post-processing
of the quantum samples which are essentially classical binary samples. A natural
progression from this experiment is to introduce classical layers that perform non-
linear transformations on the QBM samples. This will scale up the dimension of the
output while keeping the number of qubits constant and hence increase the difficulty
of the learning task. Not only is this more efficient in the number of qubits used but
it offers further possibilities to study quantum advantages in generative networks.
For that, we refer to Sec. 4.1.

86

2 4 8 16 32 64 128 256
Size of Training Set

1.0

0.5

0.0

0.5

1.0

Fi
tn

es
s

D
iff

er
en

ce

1e 5

2 4 8 16 32 64 128 256
Size of Training Set

0.0

0.2

0.4

0.6

0.8

1.0

Sq
ua

re
d

E
rr

or

1e 5
quantum
classical

Figure A.1: Benchmarking results for a potential quantum advantage in a 4 qubit
Quantum Boltzmann Machine (QBM). A quantum advantage is defined as a smaller mean
square error when comparing a QBM with non-diagonal Hamiltonian (blue) to a QBM
with diagonal Hamiltonian (grey). The diagonal model is taken as classical reference
while the non-diagonal is considered quantum. All models are trained on random binary
training sets of different sizes, i.e. increasing number of training samples. Their final
overlap after training is calculated into an overlap difference. A positive fitness difference
(blue shaded area) indicates a quantum advantage. 200 individual runs are marked as
dots while the 25%-75% percentiles are shown as boxes. There is no indication for a
quantum advantage. In fact, both model converge always with very high accuracy. The
task of learning arbitrary distributions seems like too simple task to compare quantum
and classical model.

87

B Quantum-assisted Generative Adversarial
Network

The Quantum-assisted Generative Adversarial Network (QaGAN) presented here
is a model consisting of a conventional Generative Adversarial Network (GAN)[26]
archtitecture and a qubit system that produces the random noise for the GAN (see
Fig. B.1).
Typically, a GAN consists of an Generator network that upsamples white noise into
an output and a Discriminator that is trained to label the generated samples as fake
and the training data as real. The two networks take part in an adversarial min-max
game where the Generator is trained to fool the Discriminator with its generated
data and the Discriminator is trained to detect the generated samples. During train-
ing, the Discriminator becomes better at detecting real training samples such that
the Generator consequently has to generate samples which are more similar to the
training data samples.
The random noise that is input to the Generator to create a sample is usually white
noise of random continuous pixel values. This is efficient to create classically and
ensures that the Generator needs to learn important systematics of the training data
because it has to be robust against practically infinite different inputs.

By replacing the random noise input to the Generator with quantum samples gener-
ated by generative Quantum or Quantum-assisted Machine learning algorithm (Secs.
3.1, 3.2 & 4.1), one sample the input to the GAN from complex parametrized dis-
tributions. This allows for two distinct training setups for a QaGAN:
First, the quantum system can be completely replaced by random binary noise dur-
ing training. This binary noise with flat distribution can be utilized efficiently during
the training iterations of the model. After the classical Generator is trained, the
quantum model is initiated and trained to learn a specific probability distribution.
In other words, the Generator learns to map binary noise to high quality output
and the quantum layer then learns a distribution of those samples, for example if
one prefers to generate more number 5s than 1s, which is something that one cannot
usually control in a GAN.
Second, the distribution of the binary quantum samples can be adapted during
training. This could make the training more reliable for certain expected results
and may help solve common problems in training GANs such as mode collapse and
generally unstable training. This work provides no demonstration of such benefits.

88

Figure B.1: Example model architecture of a Quantum-assisted Generative Adversarial
Network (QaGAN). The noise that is fed into the generator network of a conventional
GAN [26] is replaced by binary quantum samples produced by a qubit layer. This allows
to reparametrize the distribution from which the input to the generator network are drawn
during or after training.

Figure B.2: Generated samples of a QaGAN that was trained on the first 8 MNIST
samples after 2000 training epochs.

Fig. B.2 shows a prove of principle run of a QaGAN which consists of a slightly
modified convolutional GAN Python template [35] in the tensorflow framework [2]
and qubit layer which is initiated in a flat distribution of all possible superpositions.
The training set for the QaG are the first eight samples of the 28x28 MNIST training
data.

89

C Thermofield Double State

A relevant question is how to create a thermal state on a qubit quantum computer
in order to not. One idea is to create a so-called Thermofield Double State [19].
One doubles the number of qubits in order to have an environment with which the
target system interacts. In the end, the environment is traced out and a thermal
state in the system remains.
The thermofield double (TFD) state in our case is the pure state

|TFD〉 =
1√
Z

∑
n

e−βEn/2|n〉S ⊗ |n〉E (C.1)

where S and E are two systems (system-environment) with the property that if you
trace out one, the remaining system is in the purified thermal state with eigenstates
n, eigenenergies En and inverse temperature β.
The Hamiltonian implemented for the TDF is

Htotal = HS ⊗HE = HS +HE +Hint. (C.2)

HS and HE are the system- and environment Hamiltonian, both follow form of a

Quantum Boltzmann Machine spin Hamiltonian (3.9) and importantly, HS
!

= HE

must be equal. The interaction Hamiltonian Hint between the systems can be chosen
arbitrarily but constant. For our system, we naturally choose

Hint =
∑

i∈S,j∈E

Jijσ
z
i σ

z
j . (C.3)

Providing prove of prinziple that a Quantum Boltzmann Machine can be trained
using a TFD state, we train a n = 3 qubit QBM on a binomial training set (see sec.
2.5). Fig. C.1 shows the final system+enviroment tomography before tracing out
the envirmonment as well as the final traced system.

Fig. C.2 shows a comparison in performance of n = 3 Quantum Boltzmann Ma-
chines that are trained with the full Boltzmann density matrix (t = 2n − 1 in eq.
3.11), the quantum groundstate and the TFD state. The results of the groundstate
and the TFD state are idential which shows that the performance benefits of a ther-
mal state (compare fig. 3.2.3) do not come from the distribution that the thermal
state has but from the mixed ensemble nature of the models. In fact, these results
indicate that every trained pure state in a truncated QBM framework will perform
equally.

90

System + Environment
00

00
00

00
00

01
00

00
10

00
00

11
00

01
00

00
01

01
00

01
10

00
01

11
00

10
00

00
10

01
00

10
10

00
10

11
00

11
00

00
11

01
00

11
10

00
11

11
01

00
00

01
00

01
01

00
10

01
00

11
01

01
00

01
01

01
01

01
10

01
01

11
01

10
00

01
10

01
01

10
10

01
10

11
01

11
00

01
11

01
01

11
10

01
11

11
10

00
00

10
00

01
10

00
10

10
00

11
10

01
00

10
01

01
10

01
10

10
01

11
10

10
00

10
10

01
10

10
10

10
10

11
10

11
00

10
11

01
10

11
10

10
11

11
11

00
00

11
00

01
11

00
10

11
00

11
11

01
00

11
01

01
11

01
10

11
01

11
11

10
00

11
10

01
11

10
10

11
10

11
11

11
00

11
11

01
11

11
10

11
11

11

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ili

ty

full system

Traced System

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

traced system
training set

Figure C.1: Tomographies of a Quantum Boltzmann Machine where the thermal state
is obtained by a Thermofield Double (TFD) state. The training set is a binomial training
set with n = 3 qubits. Left: Tomography of the System + Environment before tracing the
environment. Right: Tomography of the traced TDF state implements a purified thermal
state.

0 50 100 150 200
Training Iterations

0.4

0.6

0.8

1.0

C
ur

re
nt

 O
ve

rl
ap

Mixed Thermal State
Pure Groundstate
Thermofield Double State

0 50 100 150 200
Training Iterations

2

4

6

8

C
ur

re
nt

 O
ve

rl
ap

Mixed Thermal State
Pure Groundstate
Thermofield Double State

Figure C.2: Comparison in training performance between a n = 3 qubit Quantum Boltz-
mann Machine with full Boltzmann density matrix, just a quantum groundstate and the
Thermofield Double state. The models are trained on random training sets. The TFD state
is a purified thermal state and thus does not perform better than a quantum groundstate.
In fact, they are virtually equal and both outperformed by the full Boltzmann thermal en-
semble model. This indicates, that the TDF state has the same performance as a quantum
groundstate and in fact any trained quantum pure state.

91

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 13.03.2020 .

93

	Introduction
	Quantum Computation
	Background & Motivation
	Current and Near-Term Quantum Devices

	Machine Learning
	Categorizations of Machine Learning Algorithms
	Artificial Neural Networks

	Quantum Machine Learning

	Techniques
	Spin-Hamiltonian
	The Variational Quantum Eigensolver and Exited States
	Numerical Models
	Optimization Algorithm cma-es
	Relevant Training Sets
	Random Training Set
	Binomial Training Set
	Bars-and-Stripes Patterns
	MNIST Data Set

	Single Qubit-Layer Generative Algorithms
	The Direct Variational Generator
	Model Description
	Training
	Sampling Benefits & BAS Random Walk

	The Quantum Boltzmann Machine
	Model Description
	Training
	Comparing Gradient Training and Optimizer Training
	Error in Truncating the Boltzmann Density Matrix
	Challenges for Groundstate Training

	Quantum-assisted Generative Algorithms
	The Quantum-assisted Generator
	Model Description
	Training
	Error in Truncating the Boltzmann Density Matrix
	Benchmarking a Potential Quantum Advantage

	Hybrid Training of Quantum-assisted Neural Networks
	Description of the Hybrid Training Method
	Improved Convergence Results

	Input-Dependent Quantum-Assisted Artificial Neural Networks
	The Hamiltonian-based Autoencoder
	Model Description
	Training
	Bencharking a Quantum Advantage

	The Hybrid-trained Hamiltonian-based Autoencoder
	Model Description
	Training
	Training Analysis
	Learning the Full MNIST Data Set
	Benchmarking a Potential Quantum Advantage

	The Gate-based Autoencoder
	Model Description
	Training
	First Training Results
	Learning the Full MNIST Data Set

	Conclusion & Outlook
	Bibliography
	Benchmarking a Quantum Advantage on a QBM
	Quantum-assisted Generative Adversarial Network
	Thermofield Double State

